Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Mouse mast cell protease-1 is required for the enteropathy induced by gastrointestinal helminth infection in the mouse

Lawrence, C.E. and Paterson, Y.Y.W. and Wright, S.H. and Knight, P.A. and Miller, H.R.P. (2004) Mouse mast cell protease-1 is required for the enteropathy induced by gastrointestinal helminth infection in the mouse. Gastroenterology, 127 (1). pp. 155-165. ISSN 0016-5085

Full text not available in this repository.Request a copy from the Strathclyde author


The relationship between intestinal pathology and immune expulsion of gastrointestinal nematodes remains controversial. Immune expulsion of gastrointestinal helminth parasites is usually associated with Th2 responses, but the effector mechanisms directly responsible for parasite loss have not been elucidated. Mast cell hyperplasia is a hallmark of infection with gastrointestinal nematodes, in particular Trichinella spiralis. Although the precise mechanism by which mast cells induce expulsion of these parasites has not been elucidated, it has been proposed that mast cell mediators, including cytokines and granule chymases, act to create an environment inhospitable to the parasite, part of this being the induction of intestinal inflammation. Therefore, the aims of this study were to dissect the role of mast cells and mast cell proteases in the induction of parasite-induced enteropathy. Mast cell-deficient W/Wv and mouse mast cell protease-1 (mMCP-1)-deficient mice were infected with T. spiralis, and parasite expulsion, enteropathy, and Th2 responses were determined. Expulsion of the parasite was delayed in both strains of mice compared with wild-type controls; additionally, in both cases, the enteropathy was significantly ameliorated. Although Th2 responses were significantly reduced in mast cell-deficient W/Wv mice, those from mMCP-1-deficient mice were similar to wild-type mice. Additionally, levels of TNF-α and nitric oxide were significantly reduced in both W/Wv and mMCP-1 deficient mice. These results imply that mast cells may contribute to the induction of protective Th2 responses and, importantly, that the intestinal inflammation associated with gastrointestinal helminths is partly mediated by mMCP-1 MLN, mesenteric lymph node; MMC, mucosal mast cell; mMCP-1, mouse mast cell protease-1; MPO, myeloperoxidase; p.i., postinfection; TUNEL, terminal dUTP nick-end labeling; VCU, villus crypt unit