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Abstract

We use the lubrication approximation to investigate the steady locally unidirectional gravity-
driven draining of a thin rivulet of a perfectly wetting Newtonian fluid with prescribed volume
flux down both a locally planar and a locally non-planar slowly varying substrate inclined at
an angle o to the horizontal. We interpret our results as describing a slowly varying rivulet
draining in the azimuthal direction some or all of the way from the top (& = 0) to the bot-
tom (o = m) of a large horizontal circular cylinder with a non-uniform transverse profile. In
particular, we show that the behaviour of a rivulet of perfectly wetting fluid is qualitatively
different from that of a rivulet of a non-perfectly wetting fluid.

In the case of a locally planar substrate we find that there are no rivulets possible in
0 < a < 7/2 (i.e. there are no sessile rivulets or rivulets on a vertical substrate), but that
there are infinitely many pendent rivulets running continuously from a = w/2 (where they
become infinitely wide and vanishingly thin) to o = 7 (where they become infinitely deep with
finite semi-width).

In the case of a locally non-planar substrate with a power-law transverse profile with
exponent p > 0 we find, rather unexpectedly, that the behaviour of the possible rivulets is
qualitatively different in the cases p < 2, p = 2 and p > 2 as well as in the cases of locally
concave and locally convex substrates. In the case of a locally concave substrate there is
always a solution near the top of the cylinder representing a rivulet that becomes infinitely
wide and deep, whereas in the case of a locally convex substrate there is always a solution
near the bottom of the cylinder representing a rivulet that becomes infinitely deep with finite
semi-width. In both cases the extent of the rivulet around the cylinder and its qualitative
behaviour depend on the value of p. In the special case p = 2 the solution represents a rivulet
on a locally parabolic substrate that becomes infinitely wide and vanishingly thin in the limit
o — w/2. We also determine the behaviour of the solutions in the physically important limits
of a weakly non-planar substrate, a strongly concave substrate, a strongly convex substrate, a
small volume flux, and a large volume flux.



1 Introduction

Gravity-driven rivulet flows occur in a wide variety of practical situations ranging from indus-
trial situations such as coating processes and heat exchangers to geophysical situations such as
mud and lava flows. As a result of their numerous practical occurrences there has been con-
siderable theoretical work on a variety of rivulet flows in recent years, much of it building on
the pioneering analysis of the steady unidirectional flow of a Newtonian fluid down an inclined
plane in the presence of significant surface-tension effects by Towell & Rothfeld (1966). In par-
ticular, Allen & Biggin (1974) and subsequently Duffy & Moffatt (1995) used the lubrication
approximation to obtain the leading-order solution in the asymptotic limit in which the aspect
ratio of the transverse cross-sectional profile of the rivulet is small, i.e. in which the trans-
verse profile of the rivulet is thin. Specifically Duffy & Moffatt (1995) calculated the shape
of the rivulet as a function of «, the angle of inclination of the substrate to the horizontal,
and interpreted their results as describing the locally unidirectional flow down a locally planar
substrate whose local slope « varies slowly in the flow-wise direction and, in particular, used
them to describe the flow in the azimuthal direction round a large horizontal circular cylinder.
Subsequently Wilson & Dufly (1998) extended this analysis to study the locally unidirectional
flow of a rivulet down a locally non-planar slowly varying substrate. In particular, they found
that a rivulet can run continuously from the top to the bottom of a large horizontal circular
cylinder with a trough or ridge in the azimuthal direction only if the transverse profile of the
substrate is that of a sufficiently shallow trough; if the profile is a deeper trough then no such
rivulet is possible near the bottom of the cylinder, while if the profile is a ridge then no such
rivulet is possible near the top of the cylinder. More generally, various aspects of free-surface
flow with significant surface-tension effects down an open channel were considered by Kuo &

Tanner (1972) and Hansen & Solonnikov (1990). The important but difficult problem of the



stability of rivulet flow has been investigated by Davis (1980), Weiland & Davis (1981), Young
& Davis (1987), Schmuki & Laso (1990) and Wilson & Duffy (1998).

All of the work described above is concerned with rivulets of a fluid that wets the substrate
non-perfectly, i.e. with rivulets that have a non-zero contact angle at their contact lines with
the substrate. Rather surprisingly there has been almost no work on rivulets of a fluid that
wets the substrate perfectly, i.e. on rivulets that have a zero contact angle. Very recently Duffy
& Wilson (2003) have analysed the locally unidirectional flow of a rivulet of perfectly wetting
fluid with temperature-dependent viscosity down a uniformly heated or cooled slowly varying
substrate. The only other work on rivulet flow of a perfectly wetting fluid of which the authors
are aware is that by Kuibin (1996) and Alekseenko, Geshev & Kuibin (1997) who considered
unidirectional flow on the underside of a circular pipe. In particular, Kuibin (1996) obtained
the leading-order asymptotic solution for a narrow rivulet of a perfectly wetting fluid on the
underside of a locally parabolic substrate.

In the present paper we shall use the lubrication approximation to investigate the steady
locally unidirectional gravity-driven draining of a thin rivulet of a perfectly wetting Newtonian
fluid with prescribed volume flux down both a locally planar and a locally non-planar slowly
varying substrate. In particular, we shall show that the behaviour of a rivulet of perfectly
wetting fluid is qualitatively different from that of a rivulet of a non-perfectly wetting fluid
described by Duffy & Moffatt (1995) and Wilson & Duffy (1998). Specifically we shall consider
the case of a substrate whose local transverse profile is that of a power law in the transverse
coordinate with exponent p > 0, and we shall find, rather unexpectedly, that the behaviour
of the possible rivulets is qualitatively different in the cases p < 2, p =2 and p > 2 as well as
in the cases of locally concave and locally convex substrates. Kuibin’s (1996) solution will be

recovered as a limiting case of the present results in the special case p = 2.



2 Problem Formulation

Consider initially the steady unidirectional gravity-driven draining of a thin symmetric rivulet
of constant (but unknown) semi-width a of perfectly wetting Newtonian fluid with prescribed
positive volume flux @ = @ > 0 down a symmetric substrate inclined at an angle o 0<a<m)
to the horizontal. Following the approach of Wilson & Duffy (1998) in the non-perfectly wetting
case we consider a non-planar substrate whose profile varies transversely to the direction of
flow but not in the direction of flow. We choose Cartesian axes Ozyz as indicated in Fig. 1,
with the z axis in the direction of flow and the y axis horizontal (transverse to the direction of
flow) with respect to which the (known) position of the substrate is denoted by z = H(y) and
the (unknown) position of the free surface by z = (H + h)(y), where h = h(y) > 0 denotes the
(unknown) thickness of the rivulet. The velocity u = u(y, z)i and pressure p = p(z,y, z) of the
fluid are governed by the familiar mass-conservation and Navier-Stokes equations. The fluid
is assumed to have constant density p, viscosity p and surface tension «. On the substrate the
fluid velocity is zero, while on the free surface the usual normal and tangential stress balances
and the kinematic condition apply. Since the fluid is perfectly wetting, at the edges of the
rivulet ¥y = +a where h = 0 the contact angle takes the prescribed value of zero.

Analytical progress can be made by considering the case of a rivulet whose cross section is

slender with small aspect ratio ¢ < 1, and thus we scale the system appropriately by writing

y=1Ily*, a=la*, z=¢€lz", h=¢h*, H=cH",

272 374
ge“l pge°l " 1
w=P" . v, Q= . Q%, p= poo + pgelp*, (1)

where | = (v/ pg)l/ 2 is the capillary length in which g denotes acceleration due to gravity, and
Poo is the uniform pressure of the surrounding atmosphere. In the non-perfectly wetting case
Wilson & Duffy (1998) identify e with the (non-zero) contact angle. In the perfectly wetting

case this choice is not possible and we can adopt one of several alternative definitions of e,



including

~\ 1/3
e (@;;Q) )

(corresponding to setting Q* = 1). However since there are other equally sensible choices
we leave € arbitrary in what follows in order to keep the presentation as general as possible.
The star subscripts will be dropped immediately for clarity, and hereafter all quantities are
non-dimensional unless it is stated otherwise.

The leading-order versions of the components of the governing Navier—Stokes equation are
O=sina+u,,, 0=-p,, 0=-p,—cosq, (3)
to be integrated subject to the boundary conditions of no slip at the substrate z = H,
u = 0, (4)
balances of normal and tangential stress at the free surface z = H + h,
p=—(H+h)", wu,=0, (5)
and zero contact angle at the edges of the rivulet y = *a,
h=0, K =0. (6)

Primes denote differentiation with respect to argument. Note that the mass-conservation
equation and the kinematic condition are satisfied identically.

Integrating (3c) subject to (5a) at z = H + h yields
p=(H+h—2z)cosa— (H+h)". (7)
Then (3b) yields a third-order ordinary differential equation for A, namely

(B +h)" ~ Sm*(H + b)) =0, 8)



where we have introduced the notation S = sgn(cosa) and m = |cos o|'/2. Equation (8) is
to be integrated subject to (6) at y = fa. For the solution to be physically realisable A must
satisfy h > 0 for |y| < e, and so, in particular, it must satisfy ~(0) > 0 and A”(+a) > 0.

Integrating (3a) subject to (4) at z = H and (5b) at z = H + h yields

sin «
2

(= — H)(2h + H - 2), (9)

U =

and so the local flux @ = @(y) is given by

h .
1_1,=/ udz = smah3’ (10)
0 3

and hence the flux of fluid down the rivulet, Q, is given by

+a : a
Q= ady= 28;“"‘/ K3 dy. (11)
—a 0

So far the analysis has been restricted to strictly unidirectional flow but, as Wilson &
Duffy (1998) describe in the non-perfectly wetting case, this solution is also the leading-order
approximation to the local behaviour of a rivulet with non-uniform width draining down a non-
planar cylindrical substrate, where ae now represents the local inclination of the substrate to the
horizontal, provided that o varies sufficiently slowly, i.e. provided that both the longitudinal
aspect ratio and the reduced Reynolds number are sufficiently small. Thus we shall interpret
the results given subsequently as describing a slowly varying rivulet draining in the azimuthal
direction from the top (o = 0) to the bottom (a = 7) of a large horizontal circular cylinder

with a non-uniform transverse profile.
3 The Locally Planar Case H =0

In the special case H = 0 the substrate is locally planar. Solving (8) subject to (6) at y = +a
shows that no solution is possible when cosa > 0 (i.e. for a sessile rivulet or a rivulet on a

vertical substrate) but that infinitely many solutions are possible when cosa < 0 (i.e. for a



pendent rivulet), namely

and
~ 1/3
3Qm n
for n = 1,2,3,.... In particular, these solutions show that the semi-width a (but not the

profile h) of the rivulet is, rather surprisingly, independent of the value of the flux Q. For odd

values of n the solution for h attains its minimum value of zero (n+1)/2 times in 0 <y < a

at y/a=1/n,3/n,...,(n—2)/n,1 and its maximum value of
- 1/3
3Qm
hm=h((0) =2 | ——— 14
" © [Snwsina] (14)

(n+1)/2 timesin 0 <y <aaty/a=0,2/n,...,(n—1)/n. For even values of n the solution for
h attains its minimum value of zero (n+2)/2 timesin0 <y < aaty/a=0,2/n,...,(n—2)/n,1

and its maximum value of

- 1/3
3
hm=h(3> =2 lﬂ] (15)
n Snrsin o
n/2 timesin 0 <y <aaty/a=1/n,3/n,...,(n—1)/n. In particular,
~1/2 5 11/3 1/6
afvmr(oe—g> — 00, hm~2[%1| (a—g) —0 (16)
as o — 7/2%, and
- 1/3
nmw 3
a:n7r+Z(7r—a)2+O(7r—oz)4, P ~ 2 l57—747r%] — 00 (17)

as @« — 7. Note that all of these solutions are physically realisable and that the higher-
branch solutions (i.e. those for n = 2,3,...) are simply “arrays” of n identical contiguous
rivulets each of which is a (suitably rescaled) copy of the lowest-branch (n = 1) solution.
Presumably these higher-branch solutions would be rather difficult to achieve in practice!

Physically these solutions correspond to rivulets running continuously from o = 7/2 (where



they become infinitely wide and vanishingly thin according to (16) as o — 7/2%) to o = 7
(where they become infinitely deep with finite semi-width nr according to (17) as o — 7).
Note that this behaviour is qualitatively different from the corresponding behaviour in the
non-perfectly wetting case discussed by Duffy & Moffatt (1995) and Wilson & Duffy (1998,
Section V). In particular, in the non-perfectly wetting case there is a physically realisable
solution for all values of « representing a rivulet running continuously from & = 0 to a = =,
and the higher-branch solutions are not physically realisable.

Figure 2 shows a and hm/Ql/ 3 plotted as functions of /7 for a range of values of n.
Figure 3 shows typical scaled lowest-branch (n = 1) transverse rivulet profiles h/QY? plotted

as functions of y for a range of values of «.

4 The General Case H #0

In the general case H # 0 the substrate is not locally planar. Solving (8) subject to (6) at
y = *a yields
h(y) = —aH'(a)f(M,Y) + H(a) — H(y), (18)

where the function f = f(M,Y) is defined by
( cosh M — cosh MY

i <
AV sinh M if 0<a<m/2,
Ve
fogy)y=1 1 2Y if a=m/2, (19)
cos MY — cos M
i <
W sin M if 7/2<a<m,

and we have introduced the notation M = ma and Y = y/a. Note that the solution in the
planar case discussed in section 3 is not recovered simply by setting H = 0 in (18). Note also
that the function f(M,Y") defined in (19) differs from the corresponding function f(y) used by
Wilson & Duffy (1998, Equation 16) by a factor of a.

For any prescribed positive value of the flux, Q > 0, the possible rivulet semi-widths are

the positive solutions for a of the equation @ = Q, where Q is given by (11) with A given by

9



(18). Once a is known A is given explicitly by (18).
Thus far the analysis is valid for a general symmetric transverse substrate profile H(y).
Henceforth for simplicity we shall follow Wilson & Duffy (1998) and restrict our attention to

a general symmetric power-law profile in the form
H(y) = Alyf, (20)

where both the non-zero coefficient A # 0 and the positive exponent p > 0 are constants.
Positive or negative values of A correspond to locally concave or convex substrates respectively.
The special case p = 2 corresponds to a locally parabolic substrate with constant curvature

2A. With the choice (20) for H the solution for A given by (18) can be written as
h=Ad’ [-pf(M,Y)+1— Y]] (21)

and so from (11) the flux @ can be written as

B 2sin aA®

Q= WF(M,P)7 (22)

where the function F'(M, p) is defined by
1
P(M,p) = M%* [ [op f(M,Y) + 1= V7" Y. (23)
0

In particular, equations (21) and (22) imply that a and h/Q*® depend on the parameters Q
and A only in the combination 4%/Q. Evidently determining the behaviour of F' and hence
Q is key to understanding the behaviour of the possible rivulet solutions. The asymptotic
behaviours of the function f and hence of the function F' in the limits M — 0, M — oo and
M — nw (n=1,2,3,...) are given in Appendix A for future reference.

For any given value of the exponent p > 0 the function F' and hence the flux @ can, in
principle, be determined explicitly. Since the algebra required to calculate F is, in general,
rather lengthy we used the symbolic algebra packages MAPLE and MATHEMATICA to per-

form the analytical evaluation of @) as well as the subsequent numerical calculation of a from
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the algebraic equation Q = Q. The efficient numerical procedure used to obtain the plots of a
as a function of « given in the present paper is described in Appendix B.

The critical condition h(0) = 0 for the solution (21) to be physically realisable gives
pf(M,0) =1, ie. Mcoth(M/2) =pin 0 < a <7/2 and Mcot(M/2) =pin /2 < a < .
The solutions of these two equations are denoted by M = M* and the corresponding values of
F by F* = F(M*,p). On the other hand, the critical condition h”(a) = 0 gives the equations
1+ McothM=pin0<a<n/2and 1+ McotM =pinn/2<a<.

As in the non-perfectly wetting case studied by Wilson & Duffy (1998) and in the locally
planar case discussed in section 3 there are, in general, infinitely many branches of solutions
for a in 7/2 < o < m; however for simplicity we shall hereafter restrict our attention to the
lowest branch of solutions satisfying 0 < a < w/m (i.e. 0 < M < 7) in 7/2 < & < 7 unless it
is stated otherwise.

Figure 4 shows plots of F'(M,p) as a function of M in the cases cosa > 0, cosa = 0 and
cosa < Oforp=1p=2and p=3. When cosa > 0 all values of M > 0 are relevant,
but when cosa < 0 we restrict our attention to values of M satisfying 0 < M < w. As Fig.
4 shows, the form of F' is qualitatively different for p < 2, p = 2 and p > 2. The form of
F when p = 1 shown in Fig. 4(a) is typical of that for all values of p satisfying p < 2, and
the form of F' when p = 3 shown in Fig. 4(c¢) is typical of that for all values of p satisfying
p > 2. As Fig. 4(a) illustrates, when p < 2 then F increases monotonically from zero to
+oo with M when cosa > 0. However, when cosa < 0 then F initially increases from zero
with M before reaching a maximum value F_,, = F(M,..,p) > 0 at M = M,,, and then
decreases monotonically as M increases; specifically F' = 0 at some value M = My (> M,..),
and F' — —oo according to (A.8) with n = 1 as M — n~. As Fig. 4(b) illustrates, in the
special case p = 2 then F' increases monotonically from zero to +oo with M when cos o > 0, is

identically equal to zero when cos @ = 0, and decreases monotonically from zero to —oo with
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M when cosa < 0. As Fig. 4(c) illustrates, when p > 2 then £’ decreases monotonically from
zero to —oc with M when cos o < 0. However, when cos o > 0 then F initially decreases from
zero with M before reaching a minimum value F;, = F(M_,,p) < 0 at M = M, and then
increases monotonically as M increases; specifically F' = 0 at some value M = My (> Mui),
and F' — oo according to (A.6) as M — oo.

Differentiation of (23) shows that M,., and M., satisfy 1 + Mcot M = p and 1+
M coth M = p, respectively. These equations are exactly the same as those obtained ear-
lier for the critical condition h”(a) = 0, showing that the non-zero stationary points of F
correspond to the critical physically realisable solution satisfying A" (a) = 0.

Numerically calculated values of M., M., Mo and M* together with F,.,, F.:, and F*
are plotted as functions of p in Fig. 5. Note that F,,, and M_,, are defined only for p < 2,

while Fp;, and M., are defined only for p > 2. As Fig. 5(a) shows, M., Mo and M* decrease
monotonically with p in 0 < p < 2 (from approximately 2.028758, 2.891093 and = respectively
as p — 07, to zero as p — 2), and that M,;,, Mo and M* increase monotonically from zero
with p in p > 2. Moreover careful asymptotic analysis reveals that M., ~ (3(2 —p))/?2 = 0
as p — 27, Mo ~ (3(p—2))Y2 = 0as p — 2T, My ~ [k1(2—p)|*/? — 0 (with k; ~ 5.216666)
and M* ~ |6(2—p)|"/2 = 0asp— 2, Mpn ~p—1— 00, My ~ p — oo and M* ~ p — oo
as p — oo, and hence F,,, ~ kyp® — 0 (with ky ~ 5.565160) and F* — —57/16 as p — 0,
Fro ~ k3(2 — p)'¥/2 — 0% (with k3 ~ 0.138892) and F* ~ —kg(2 — p)'¥/2 — 0~ (with
kg =~ 0.099352) as p — 27, Fow ~ —k3(p — 2)1%/2 — 0~ and F* ~ ky(p — 2)¥¥2 — 0% as
p— 2+, and F,;, ~ —p%/3 — —oco and F* ~ 10p*®—1 /243 — o0 as p — oo.

Using the information about the behaviour of the function F' (and hence Q) described
above we can now determine the qualitatively different behaviour of the rivulet solutions in

the cases p < 2, p =2 and p > 2. In all three cases the solutions for locally concave (A > 0)

and locally convex (A < 0) substrates are also qualitatively different.
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4.1 The Limit o — 0T

In the limit & — 0 (i.e. near the top of the cylinder) from (22) we must have F — co according

to (A.6) and hence

=1 1/(3p+1
(p+ 12+ ) (3p+ Q] o
“r 4pda A3 B (24)
as o — 01, Using (A.5) in (21) we obtain
~ 1P/ (3p+1)
(p+ D)2+ 1)(3p+1)Q|" ( _M>
h A[ PPl 1 ) = (25)

as o — 07. In particular, (24) and (25) show that the rivulet becomes infinitely wide and
deep as @ — 07 when the substrate is locally concave (i.e. when A > 0), but that there is
no solution near o« = 0 when the substrate is locally convex (i.e. when A < 0). Note that
in this limit # + h ~ H(a) and the free surface of the rivulet becomes flat away from the
contact lines. This behaviour is illustrated by Fig. 6 which shows typical scaled transverse
rivulet profiles (H + h)/ Q3 plotted as functions of y for a range of values of a near & = 0 in
the case p = 2 and A3/Q = 1. Note also that (24) coincides with the corresponding result in
the non-perfectly wetting case obtained by Wilson & Duffy (1998, Equation 34), showing that

contact-angle effects play only a minor role in this limit.

4.2 The Limit oo — 7/2

In the limit & — 7/2 (i.e. when the substrate is nearly vertical) from (22) we must have F' — 0
and hence either ma — 0 (which occurs for all values of p including p = 2) or ma — My (which
occurs for all values of p except p = 2), corresponding to three rather different types of rivulet

behaviour.

(a) The Case ma — 0

In the case ma — 0 the behaviour depends on whether p =2 or p # 2 (i.e. on whether or not

the substrate is locally parabolic).
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In the general case p # 2 in which the substrate is not locally parabolic we have

T iy 2
a=aota (o= 5) +0(a=7)

as o — 7/2, and using (A.1) in (21) we obtain

2

s T

h=hy+h = -z
orh(eg)role-3)

where the functions hg = ho(y) and hy = hy(y) are given by

2 _ .2 P
0 ao{ p 2a3 + ah |’
AaP3
b=~ F50— (a3 — ¢) [ao(ad — ¥?) + 1201 (p — 2)] ,

and using (A.2) in (22) yields

3 3p+1 _ .3 2
Q= 2A%ay Byt Bp + Va1 Fo — ajF1 (a B E) Lo (oz B z) ’
3 aop 2 2

where Fp and Fj are given by (A.3) and (A.4) respectively. Hence we deduce that

[ 3g \Yer
0=\ 2R, A

and
Flag
] = .
(Bp+1)Fp

(27)

(28)

(29)

(30)

(31)

(32)

In particular, since Fy has the same sign as 2 — p, equation (31) shows that when the substrate

is locally concave (i.e. when A > 0) a solution of this kind is possible only when p < 2, and

when the substrate is locally convex (i.e. when A < 0) a solution is possible only when p > 2.

In addition, since F; > 0, equation (32) shows that a; = da/da evaluated at o = 7/2 is

positive when p < 2 and negative when p > 2. The solutions for hg, ag and a1/ad in the cases

p=1,3,4,5 and 6 are listed in Table 1 for reference. Note that there is no solution of this

kind in the special case p = 2.
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In the special case p = 2 in which the substrate is locally parabolic, using (A.2) in (22)

yields

2432430 1" (w )*3/13 -
~| = — - — —
¢ 3243 g~ ¢ o

as o — 7/2, and using (A.1) in (21) we obtain

51413 2\ 2 1/13
A [ 243243Q) Yy T
T 12 [W] (1 B _) (5 ; a) —0 (34)

as o — m/2. In particular, (33) and (34) show that when p = 2 the rivulet becomes infinitely
wide and vanishingly thin as @ — 7/2. Furthermore a solution of this kind on a locally concave
parabolic substrate (i.e. when p = 2 and A > 0) is possible only as @ — 7 /2~ and a solution on

a locally convex parabolic substrate (i.e. when p = 2 and A < 0) is possible only as o — /2%

(b) The Case ma — M,

In the case ma — My if F'= 0 in cos o > 0 (as it does when p > 2) then

x ~1/2
a~ My (§~a) — 00 (35)

as a — m/27, while if F'=0in cosa < 0 (as it does when p < 2) then

T —-1/2
aNMO (a—§> — 00 (36)

as o — 7/2%. In both cases from (21) we obtain

h ~ AdP [—pf (Mo, %) +1- %{f} - 0. (37)

In particular, (35)—(37) show that the rivulet becomes infinitely wide and deep as o — 7/2~
for p > 2 and as @ — 7/2% for p < 2. Note that there is no solution of this kind in the special

case p = 2.
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4.3 Limit o — 7~

In the limit @ — 7~ (i.e. near the bottom of the cylinder) from (22) we must have |F| — oo

according to (A.8) and hence

\q1/3
a~nm+ pA(nm)PL [‘ETT@] (38)
as a — 7. Using (A.7) in (21) we obtain
~ 1/3
3

as @ — 7. Thus in this limit a approaches nw from above when the substrate is locally
concave (i.e. when A > 0) and from below when it is locally convex (i.e. when A < 0). In
particular, if we restrict our attention to lowest-branch solutions satisfying 0 < a < 7w/m in
/2 < a < 7, then (38) and (39) with n = 1 show that the rivulet becomes infinitely deep with
finite semi-width m as o — 7~ when the substrate is locally convex (i.e. when A < 0), but

that there is no solution near o = 7 when the substrate is locally concave (i.e. when A > 0).
5 Solution for p < 2

When the substrate is locally concave (i.e. when A > 0) there is one solution for a in 0 <
a < /2, two solutions in 7/2 < a < ., and one solution at @ = .., where o, =
Qunax (A2 /Q,P) (/2 < Qpax < ) denotes the critical value of « corresponding to M = M,,..

and so satisfles
2A%F
3Q

Physically these solutions correspond to a rivulet running continuously from « = 0 (where it

SIN Qax = | COS amax|(3p+1)/2. (40)

becomes infinitely wide and deep according to (24) and (25) as @ — 07) through o = 7/2
(where a = ag, h = hg and da/da > 0) to & = G, (Where a = ., = M. cos amaxl_lﬂ).

Note that the second solution for a in 7/2 < & < @p,., Which satisfies a — oo according to (36)

16



as a — m/2% and connects with the first solution at & = .y, is never physically realisable
since it always satisfies h”(a) < 0.

On the other hand, when the substrate is locally convex (i.e. when A < 0) there is no
solution for a in 0 < o < m/2 and one solution in 7/2 < a < 7. This solution satisfles a — oo
according to (36) as @ — m/2%, and @ — 7~ according to (38) with n =1 as o — «~. This
solution is physically realisable in o* < o < 7 but not in 7/2 < @ < «* in which interval it
satisfies h(0) < 0, where o = «*(43/Q,p) (7/2 < o* < 7) denotes the critical value of «

corresponding to M = M™* and so satisfies

2 A3 "
3Q

sina* = | cos o*|3PH/2, (41)

Physically this solution corresponds to a rivulet running continuously from a = «* (where
a = a* = M*|cosa*|~/?) to o = 7 (where it becomes infinitely deep with semi-width =
according to (38) and (39) withn=1asa — 77).

Figure 7(a) shows a sketch of a plotted as a function of o when p < 2 for both A > 0 and
A < 0 which illustrates all of the features described above. In particular, Fig. 7(a) shows how
the solutions for A > 0 fail to be physically realisable via h"(a) = 0 at a = @, and solutions
for A < 0 fail to be physically realisable via h(0) = 0 at o = o*. Figure 7(a) also shows how
the curve a = M| cos o|~1/2 in 7/2 < & < 7 separates the (o, a) plane into regions containing
the solutions for A > 0 and A < 0.

Figure 7(b) shows numerically calculated values of a plotted as a function of a/7 for a range
of both positive and negative values of A/ QY3 in the case p = 1. In this case M,.. = /2,
F.c = (37% + 3672 — 5767 + 1168)/192 ~ 0.031123, My =~ 2.151041, M* ~ 2.331122 and

F* ~ —0.047340. Note that in this case a,.., and a* are given explicitly by

A3F 6 2 1/2
Qe = 7 —sin™ ! <— == 4 {A mex | 1] (42)

3Q 9Q?
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and

30 90?2

Figure 8 shows numerically calculated values of a,,,, and a* together with a,,., and a* plotted

3 6 %2 1/2
a*:w—sm—l(-AF +[AF +11 ) (43)

as functions of A/ Ql/ 3 in the case p = 1. Note that a,.., and a..., are defined only for A > 0,
while o* and a* are defined only for A < 0. As Fig. 8 shows, in this case «,., is a monotonically
increasing function of A/Ql/3 satisfying ou., — 7/2% as A/Ql/3 — 0% and a,,, — 7 as
A/Ql/ 3 — 00, a* is a monotonically decreasing function of A/ Q3 satisfying o — 7~ as
A/QY3 — —oo and o* — 7/2F as A/QY® — 07, a,., is a monotonically decreasing function

of A/QY3 satisfying .. — oo as A/QY® — 0% and an. — M7, as A/QY® - oo, and a*

max

is a monotonically increasing function of A/QY? satisfying a* — M** as A/QY3 — —oco0 and

a* — oo as A/Q'Y3 — 0~. Setting p =1 in (24) and (25) shows that if A > 0 then

=\ 1/4 =\ 1/4
6Q 6Q ||
as a — 0%, setting p =1 in (31) and (28) shows that if A > 0 then
~\ 1/4
84Q A )
a=ag= (F) , h=hy= Tm(ao—lyl) (45)

at o = 7/2, while setting p =1 and n =1 in (38) and (39) shows that if A < 0 then

ol — o) 11/3 2 1/3
a~m+ A [%Q)] , h~ [————3—69— ] (14 cosy) — o0 (46)

as o — 7. Figure 9 shows typical scaled transverse rivulet profiles (H + h)/ Q'3 plotted as

functions of y for a range of values of « for A/Q1/3 =1 and A/Q1/3 =-1.
6 Solution in the Special Case p = 2
When the substrate is locally concave (i.e. when A > 0) there is one solution for ¢ in 0 <

a < 7/2 and no solution in 7/2 < a < 7. This solution is always physically realisable and
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corresponds to a rivulet running continuously from « = 0, where it becomes infinitely wide

and deep according to (24) and (25) with p =2, i.e.

~\ 1/7 -\ 2/7 ;
105Q) 105Q) Y
aN(32aA3> — 00, hNA<32aA3> (1 a2> — (47)

as o — 0", to @ = /2, where it becomes infinitely wide and vanishingly thin according to

(33) and (34) as o — /27

On the other hand, when the substrate is locally convex (i.e. when A < 0) there is no
solution for @ in 0 < o < 7/2 and one solution in 7/2 < & < . This solution is again always
physically realisable and corresponds to a rivulet running continuously from a = /2, where
it becomes infinitely wide and vanishingly thin according to (33) and (34) as @ — ©/27, to
a = m, where it becomes infinitely deep with semi-width 7 according to (38) and (39) with

p=2and n=1,ie.

_ 1/3 A 1/3
an~m+2An [W] , h~ {%} (14 cosy) — o0 (48)

as o — T,

Figure 10(a) shows a sketch of a plotted as a function of « in the special case p = 2 for
both A > 0 and A < 0 which illustrates all of the features described above.

Figure 10(b) shows numerically calculated values of a plotted as a function of a/7 for a
range of both positive and negative values of A/ Q3 in the special case p = 2. Figure 11 shows
typical scaled transverse rivulet profiles (H + )/QY/? plotted as functions of y for a range of

values of o for A/QY3 =1 and A/QY/3 = —1.
7 Solution for p > 2

When the substrate is locally concave (i.e. when A > 0) there is one solution for a in 0 <
a < m/2 and no solution in 7/2 < a < w. This solution satisfies a — oo according to

(24) as @ — 07, and a — oo according to (35) as @ — w/27. This solution is physically
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realisable in 0 < o < o* but not in o* < o < 7/2 in which interval it satisfies ~(0) < 0,
where a* = a*(A3/Q,p) (0 < o* < 7/2) again denotes the critical value of a corresponding to
M = M* and so again satisfies (41). Physically this solution corresponds to a rivulet running
continuously from o = 0 (where it becomes infinitely wide and deep according to (24) and (25)
as & — 0%) to a = o* (where a = a* = M*(cos o*)~1/2).

On the other hand, when the substrate is locally convex (i.e. when A < 0) there is one
solution for a at & = @i, two solutions in @, < o < m/2 and one solution in 7/2 < o < ,
Where Cpin = G (A%/Q,0) (0 < i < 7/2) denotes the critical value of o corresponding to
M = M, and so satisfies

3 .
MTI_;L’"’ SIN Gy = (cOS amin)(3p+1)/ 2. (49)

Physically these solutions correspond to a rivulet running continuously from o = a,,, (where
@ = Qpin = Mpin(COS O ‘1/2) through o = 7/2 (where a = ag, h = hg and da/da < 0) to
a = 7 (where it becomes infinitely deep with semi-width 7 according to (38) and (39) with
n =1as a — 7). Note that the second solution for a in an, < @ < 7/2, which connects
with the first solution at o = .., and satisfies @ — co according to (35) as @ — 7/27, is
never physically realisable since it always satisfies A" (a) < 0.

Figure 12(a) shows a sketch of a plotted as a function of o when p > 2 for both A > 0 and
A < 0 which illustrates all of the features described above. In particular, Fig. 12(a) shows how
the solutions for A > 0 fail to be physically realisable via 2(0) = 0 at & = &* and solutions for
A < 0 fail to be physically realisable via h”(a) = 0 at & = a;,. Figure 12(a) also shows how
the curve a = Mo(cos @)™/2 in 0 < a < 7/2 separates the (e, a) plane into regions containing
the solutions for A > 0 and A < 0.

Figure 12(b) shows numerically calculated values of a plotted as a function of o/ for a range
of both positive and negative values of A/ Q3 in the case p = 3. In this case M., ~ 1.915008,

Foiw ~ —0.715583, My ~ 2.430916, M* ~ 2.575679 and F* ~ 0.393046. Figure 8 shows
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numerically calculated values of a,;, and o* together with a,;, and a* plotted as functions
of A/Ql/ 3 in the case p = 3. Note that a,;, and a.;, are defined only for A < 0, while a*
and a* are defined only for A > 0. As Fig. 8 shows, in this case o, is & monotonically
increasing function of A/ QY3 satisfying oy, — 07 as A/ QY3 — —o00 and an, — m/27 as
A/QI/ 3 — 07, o* is a monotonically decreasing function of A/ Q? satisfying o* — w/27 as
A/QY3 — 0t and o* — 01 as A/QY® — 00, Gm; is a monotonically increasing function of

A/QY3 satisfying @, — MY as A/QY® — —oco and agy, — oo as A/QY3 — 0™, and o

min

is a monotonically decreasing function of A/ QY3 satisfying a* — oo as A/ QY% — 0t and

a* — M*t as A/Q/3 — co. Setting p = 3 in (24) and (25) shows that if A > 0 then

= \ 1/10 =\ 3/10 3
70Q 70Q [yl
“ (27aA3) —oo he~d (27aA3> (1 3 ) (50)
as a — 07, setting p = 3 in (31) and (28) shows that if A < 0 then
~\ 1/10
1680 A
a=as = (—ﬁ) . h=ho =~ (a0 + 2ly) (a0 ~ yl)” 61)
at o = 7/2, while setting p = 3 and n =1 in (38) and (39) shows that if A < 0 then
- 1/3
Sr(m — a) 1/3 3Q
~ 3A7? |2 T ~ [—e
an~m+3AT { 30 ] , h e p—— (14 cosy) — o© (52)

as a — 7. Figure 13 shows typical scaled transverse rivulet profiles (H + h)/Q? plotted as

functions of y for a range of values of « for A/QY% = 1 and A/QY/® = —1.
8 The Limit A3/Q — 0

In the limit A3/Q — 0, corresponding to a weakly non-planar substrate and/or a large volume
flux, the asymptotic behaviour of the solution is qualitatively different in 0 < o < 7/2, a = 7/2
and 7/2 < a < 7.
In 0 < o < /2 there is no solution as A3/Q — 07, but from (21), (22), (A.5) and (A.6)
we have
(p+ 1+ 1)Bp+DQ]VH

@ 4p3 sin A3 e (53)
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and
(p+1)(2p+ 1)(3p+1)Q 7Y

h~A
4p3 sin A3

(1 - %) (54)

as A%/Q — 0%. Note that in this case H + h ~ H(a) and that the free surface of the rivulet

becomes flat away from the contact lines in this limit. When o = 7/2 we have a = a9 — oo
and h = hg, where ap and kg are given by (31) and (28) respectively, and so there is a solution
as A3/Q — 0% when p < 2, and as A%/Q — 0~ when p > 2, but not otherwise. Thus in
0 < a < /2 the rivulet becomes infinitely wide and vanishingly thin in the limit of a weakly
non-planar substrate A — 0, but infinitely wide and deep in the limit of a large volume flux

Q — oo. In /2 < a < 7 from (21), (22), (A.7) and (A.8) we have

nw pA [nm\P1 [5n7rsin a] 1/3
“~m + m?2 (m) 3Qm (55)
and
~ 1/3
3Qm n
h ~ {Smrsinal [1—(=1)"cosmy] (56)

as A%/Q — 0, and so there is a lowest-branch (n = 1) solution satisfying 0 < a < 7/m in
/2 < a < mas A3/Q — 07, but not as A3/Q — 0. Thus in 7/2 < a < = the rivulet has
finite width and thickness in the limit of a weakly non-planar substrate A — 0, but becomes
infinitely deep with finite width in the limit of large volume flux @ — co. In particular, (55)
and (56) show that, as expected, the solution for a locally planar substrate (H = 0) described

in section 3 is recovered at leading order in the limit A — 0.
9 The Limit A%/Q — oo

In the limit A%3/Q — oo, corresponding to a strongly concave substrate and/or a small volume
flux down a concave substrate, the asymptotic behaviour is qualitatively different for p # 2

and p= 2.
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In the general case p 5% 2 there are two rather different kinds of behaviour in this limit.

Firstly, from (21) and (22) we have

My

and h is given by (37) as 43/Q — oo in 7/2 < @ < 7 when p < 2 and in 0 < a < 7/2 when
p > 2, but not otherwise; however, this solution is never physically realisable. Secondly, from

(21)-(23), (A.1) and (A.2) we have

= 1/(3p+1)
3Q
ar (2F0 sin aA3) -0 (58)
and
2_ .2 b2
b~ Ad? [—p“ 2@;’ +1- '%H (59)

in 0 < o <mwhen p < 2, but not when p > 2; this solution is always physically realisable.

In the special case p = 2 from (21)-(23), (A.1) and (A.2) we have

2432439 V" . 0)
~ —
@ 32sin a cosd @ A3
and
) cosod [ 2432430 4/13 s 2 61
12 32sin o cos3 A3 a?

as A%/Q — oo in 0 < o < 7/2, but not in 7/2 < « < r; this solution is also always physically
realisable.

In particular, (58)—(61) show that, whatever the value of p, the rivulet becomes vanishingly
narrow and infinitely deep in the limit of a strongly concave substrate A — oo, but vanishingly

narrow and thin in the limit of a small volume flux Q@ — 0.
10 The Limit A%/Q — —oo

In the limit A%/Q — —oo, corresponding to a strongly convex substrate and /or a small volume
flux down a convex substrate, the asymptotic behaviour is analogous to that in the limit

A3/Q — oo described in the previous section.
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In the general case p # 2 there is a solution that is never physically realisable in which a
is given by (57) and h is given by (37) as A3/Q — ~coin 7/2 < a < m when p < 2 and in
0 < @ < 7/2 when p > 2, but not otherwise, and a physically realisable solution in which a is
given by (58) and A is given by (59) in 0 < @ < 7 when p > 2, but not when p < 2.

In the special case p = 2 there is a physically realisable solution in which a is given by (60)
and h is given by (61) as A%3/Q — —oco in 7/2 < @ < 7, but not in 0 < a < /2.

In particular, these results show that, whatever the value of p, the rivulet becomes van-
ishingly narrow and infinitely deep in the limit of a strongly convex substrate 4 — —oo, but
vanishingly narrow and thin in the limit of a small volume flux Q — 0.

In particular, in this limit we recover Kuibin’s (1996) solution for the unidirectional flow
of a narrow rivulet down the underside of a circular pipe (i.e. the present solution when
m/2 < a < 7 in the case p = 2 in the limit A3/Q — —co) given by equations (60) and (61).
Specifically, if we write A = —1/2R (where R is a non-dimensional measure of the radius of

the pipe) then from (60) the (total) width of the rivulet is given by

~ 3 711/13 =3 1/13
2a ~ 2 %QR?’ ~ 4.666900 LS — 0, (62)
4sin «| cos «f sin a| cos ¢

from (61) the maximum thickness of the rivulet is given by

| cos a [ QR? J e

h(0) ~ (63)

R

|coscr| | 243243QR3
24R

4/13
} ~ 1.235329

4sin a| cos af? sin | cos |3

and the cross-sectional area of the rivulet is given by

_ 5/13 — 5/13
a 2lcosa| | 243243QR3 | cos ¢ QR3
2 hdy ~ ~ 3.074751 64
/0 Y 45R Lsina!cosod?’ R |sina|cosal? (64)

as QR* — 0, in agreement with Kuibin’s (1996) equations (21), (19) and (20), respectively.
Note that, since Kuibin (1996) considered only unidirectional flow (with o constant), he incor-
porated a factor of | cos a|Y/2 into his characteristic length scale and a factor of sin a/| cos o

into his characteristic velocity scale.
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11 Conclusions

In this paper we used the lubrication approximation to investigate the steady locally unidi-
rectional gravity-driven draining of a thin rivulet of a perfectly wetting Newtonian fluid down
both a locally planar and a locally non-planar slowly varying substrate. In particular, we
showed that the behaviour of a rivulet of perfectly wetting fluid is qualitatively different from
that of a rivulet of a non-perfectly wetting fluid described by Duffy & Moffatt (1995) and
Wilson & Duffy (1998).

In the case of a locally planar substrate (H = 0) we found that there are no rivulets
possible in 0 < o < 7/2 (i.e. there are no sessile rivulets or rivulets on a vertical substrate),
but that there are infinitely many pendent rivulets running continuously from o = 7 /2 (where
they become infinitely wide and vanishingly thin according to (16) as o — 7/27) to e = 7
(where they become infinitely deep with finite semi-width nm according to (17) as o — 7).
This behaviour is qualitatively different from the corresponding behaviour in the non-perfectly
wetting case, in which, in particular, there is always a rivulet running continuously from o = 0
to a = m, and the higher-branch solutions in 7/2 < a < 7 are not physically realisable. This
qualitative difference in behaviour can be understood by examining the solution in the non-
perfectly wetting case obtained by Duffy & Moffatt (1995) and Wilson & Duffy (1998, Section
V) in the limit of small contact angle. Specifically if we write the contact angle in the non-
perfectly wetting case as 8 = ¢8* and let 8* — 0 then using the present non-dimensionalisation

we find that in 0 < a < /2 the rivulet becomes infinitely wide and vanishingly thin according

to
3Qm?3 I}
Y 9t sina O thE—)O (65)
when 0 < o < 7/2 and
] 1050 \“* .1 (10360 1 . 56)
~ | —— — ~ = —
433 sin o % M~ o Teina
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when @ = 7/2, but in 7/2 < « < 7 the rivulet has finite width and thickness given by

3 1/3 1/3
GNE_L(SW'B sma) ’ th(24Qm> , (67)

m  m2 3Qm 57 sin o

in agreement with the solution in the perfectly wetting case described in section 3.

In the case of a locally non-planar substrate (H # 0) with a power-law transverse profile in
the form H = A|y|P for p > 0 we found, rather unexpectedly, that the behaviour of the possible
lowest-branch rivulets (i.e. those satisfying 0 < a < n/m in /2 < a < 7) is qualitatively
different in the cases p < 2, p = 2 and p > 2 as well as in the cases of locally concave (4 > 0)
and locally convex (A < 0) substrates.

In the case of a locally concave substrate (i.e. when A > 0) there is always a solution
near o = 0 representing a rivulet that becomes infinitely wide and deep according to (24) and
(25) as & — 0T. When p < 2 the rivulet runs continuously through o = 7/2 to & = qax
(/2 < @max < ) where it fails to be physically realisable via A”(a) = 0. In the special case of
a locally parabolic substrate (p = 2) the rivulet runs continuously to a = 7/2 where it becomes
infinitely wide and vanishingly thin according to (33) and (34) as & — 7/2~. When p > 2 the
rivulet runs continuously to a = o* (0 < o < 7/2) where it fails to be physically realisable
via h(0) = 0.

On the other hand, in the case of a locally convex substrate (i.e. when A < 0) there is always
a solution near ¢ = 7 representing a rivulet that becomes infinitely deep with semi-width =
according to (38) and (39) with n =1 as @ — 7n~. When p < 2 the rivulet runs continuously
from o = o* (7/2 < o* < m) where it fails to be physically realisable via A(0) = 0. In the
special case of a locally parabolic substrate (p = 2) the rivulet runs continuously from o = 7/2
where it becomes infinitely wide and vanishingly thin according to (33) and (34) as o — /2%,
When p > 2 the rivulet runs continuously from o = o, (0 < Qmin < 7/2) where it fails to be
physically realisable via A”(a) = 0, through « = /2.

We also determined the behaviour of the solutions in the physically important limits A — 0,
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A — 00, A — —00, @ — 0%, and Q — oco. In particular, we showed that, as expected, the
solution in the case of a locally planar substrate is recovered at leading order in the limit
A — 0, and that Kuibin’s (1996) solution for the unidirectional flow of a narrow rivulet down
the underside of a circular pipe is recovered when 7/2 < a < 7 in the case p = 2 in the limit
A%/Q — —oco.

It is interesting to compare the behaviour described above with the behaviour in the non-
perfectly wetting case. In the two cases the behaviour near the top of the cylinder is qualita-
tively the same (i.e. in both cases there is always a solution near & = 0 when 4 > 0 but not
when A < 0) but the behaviour near the bottom of the cylinder is rather different. Specifically
in the non-perfectly wetting case there is a positive critical value of A, denoted by A, > 0,
such that if A < A. then there is a solution near & = m, and so if 0 < A < A, then there is a
rivulet running continuously from o = 0 to o = 7. If we again write the contact angle in the
non-perfectly wetting case as # = ¢8* then using the present non-dimensionalisation Wilson &

Duffy’s (1998, Equation 38) expression for A, in the non-perfectly wetting case 8 # 0 becomes
A= —— (68)

and thus, in particular, A. — 0 as 8 — 0, which is entirely consistent with the present results
in the perfectly wetting case 8 = 0. A notable difference between the behaviour in the two
cases is that, in sharp contrast to the present results, there is, in general, nothing special about
the case of a locally parabolic substrate p = 2 in the non-perfectly wetting case.

Although a full stability analysis of the present rivulet solutions is outside the scope of the
present work, a quasi-static stability analysis similar to that undertaken by Wilson & Duffy
(1998) in the non-perfectly wetting case indicates that the present physically realisable solutions

are quasi-statically stable provided that the flow remains symmetric and unidirectional.
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Appendix A : Asymptotic Behaviour of the Functions f and F

For future reference we note the following asymptotic results for the functions f and hence F,
defined by equations (19) and (23), respectively.
In the limit M — 0 we have

_1-v? (1-Y?P

2 4
f 5 o SM* + O(M*) (A1)
and hence
(Fo + FISMHM> L 0 if p+#2,
F~ A2
%SM”—M) if p=2, (4.2)
where we have defined
203 (p — 2)3(12p° + 124p2 + 403 361
B — p°(p — 2)°(12p” + 124p° + 403p + 361) (A.3)

S B+ De+3)p+52r+H)Ep+1)(2p+3)

P 2p°(p — 2)*(16p° + 320p* + 2444p® + 8938p + 15180p + 9327) (A4)
T BB+ D+ +5) e+ N+ )2 +3)2p+5) |

If M — oo in cosa > 0 then

! ~M-Y))
fN—M[l—e ]_>o (A.5)
and hence
6p3M3p+1
~ — 00 A6
P+ D@+ DG 1) A9
IfM—nr(n=123,...)in cosa < 0 then
1—(=1)"cosnrY —oo when M — nnt,
- nr(nw — M) - { +oo when M — nm~ (A7)
and hence
5p3 (nm)3P—2 +oc when M — nrt,
B 2(nm — M)3 7] —cc when M — nr. (A-8)
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Appendix B : Details of the Numerical Procedure

Although it is, in principle, straightforward to solve the equation Q = @ numerically by means
of a root-finding algorithm to obtain a as a function of @, in practice this calculation can not
only require a very accurate initial guess for the iterative numerical procedure but can also
be rather time-consuming. To obtain the numerical results presented in the present work we
instead adopted the quicker and more efficient method described below. Differentiating the

equation @ = @ (with @ given by (11), and with Q a prescribed constant) yields
da
Qa"‘Qaa :O, (Bl)

and we regard this as a first-order differential equation for a(a). In the simplest cases (B.1)
is easily solved by a shooting method, subject to an appropriate initial condition of the form
a{ap) = ag (obtained by solving Q = Q with a = ag). In more complicated cases a is a
multi-valued function of ¢; in such cases we represent the solution parametrically in the form
a = afs), a = a(s), in terms of a parameter s that varies along the solution curve. Then we

differentiate Q = Q with respect to s to obtain
do da
a7 a7 — O, B.2
Qag, T Qo (B2)

and so we may write

da Qa da Qo (B.3)

ds T @+ ds T (@F+Q)V
which we regard as a pair of first-order differential equations for «a(s) and a(s) which are
again easily solved by a shooting method subject to appropriate initial conditions of the form

a(0) = ag, a(0) = ao.
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Table and Table Caption

2] o W /e ]
| A (g~ ) L (s0) " 2
9ag 0¥ A3 288
- =+ 1/10
M 16800 \ 2201
3 ~5 = lu)? - B
5 (a0 +2[y[) (a0 — [y]) ( 4343 ) 28380
” . 1/1I3
9009Q \ 1
L Al2 232 — -
4 Alag — y*) ( 2048A3) 26
— ' . 1/16
A . , ) 20024 \ 288059
4 3 - - 11301120
5 | =% (2lyl” + 4aoy” + 6agly| + 3ag)(ao — y) 163543 11301120
— 1/19
2852850 \ 1091
—A(902 + ) (a2 — )2 _ 2O0EBNy ——
6 A(2a5 + y*)(ag — y?) |\ 5754884° 57324

Table 1: Solutions for hg, ag and a1 /a3 in the limit o — /2 for a range of values of p. Note

that there is no solution of this kind in the special case p = 2.
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Figure Captions

Figure 1 : The geometry of the problem.

Figure 2 : (o) The semi-width of the rivulet a, and (b) the scaled maximum thickness of the
rivulet kg, /Q? plotted as functions of a /m in the case of a locally planar substrate H = 0 for

n=1,23,...,10.

Figure 3 : Typical scaled lowest-branch (n = 1) transverse rivulet profiles h/Q/3 plotted as

functions of y in the case of alocally planar substrate H = 0 for o = 117/20, 127/20, ..., 197/20.

Figure 4 : The function F'(M, p) given by (23) plotted as a function of M in the cases cosa > 0,

cosa =0 and cosa < 0 for (a) p=1, (b) p=2, and (c) p= 3.

Figure 5 : Numerically calculated values of (a) Mpax, Muin, Mo and M*, and (b) Flay, Fuin
and I™* plotted as functions of p. Note that F,,, and M., are defined only for p < 2, while

F.in and M, are defined only for p > 2.

Figure 6 : Typical scaled transverse rivulet profiles (H + h)/Q/3 plotted as functions of y for

a=n/10,7/10%,...,7/10° in the case p = 2 and A3/Q = 1.

Figure 7 : (a) Sketch of the rivulet semi-width a plotted as a function of o in the case p < 2.
(b) The rivulet semi-width a plotted as a function of a/7 for a range of values of A/QY? in
the case p = 1. Physically realisable solutions are denoted by thick solid lines, while solutions
that are not physically realisable are denoted by thick dashed lines. The curves 7| cos | ~1/2

and Mpy|cos a|~%? in 7/2 < a < 7 are denoted by thin dashed lines.

Figure 8 : Numerically calculated values of (@) Gmux, Omin and o, and (8) Gpay, Gmin and o*

plotted as functions of A/ Ql/ 3 in the cases p = 1 and p = 3. Note that o.., and a.,, are
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defined only for A > 0, while o, and a,,;, are defined only for A < 0.

Figure 9 : Typical scaled transverse rivulet profiles (H + h)/ Q'3 in the case p = 1 plotted as
functions of y for (a) o = 7/4 and 0.537 (twice) when A/Q'/3 = 1, and (b) o = 0.547, 67/10,
7n/10, 87 /10 and 97/10 when A/QY/3 = —1. Physically realisable solutions are denoted by

solid lines, while solutions that are not physically realisable are denoted by dashed lines.

Figure 10 : (a) Sketch of the rivulet semi-width a plotted as a function of & in the special
case p = 2. (b) The rivulet semi-width a plotted as a function of a/w for a range of values of
A/QY? in the special case p = 2. The curve 7| cos | 1/2 in 7/2 < & < 7 is denoted by a thin

dashed line. Note that in this special case all the solutions are physically realisable.

Figure 11 : Typical scaled transverse rivulet profiles (H + h)/Q'/3 in the special case p = 2
plotted as functions of y for (a) @ = 7/10, 7/5, 37/10 and 27/5 when A/Q'/3 = 1, and (b)
a = 3n/5, Tr/10, 4m/5 and 97/10 when A/Q'/3 = —1. Note that in this special case all the

solutions are physically realisable.

Figure 12 : (a) Sketch of the rivulet semi-width a plotted as a function of « in the case p > 2.
(b) The rivulet semi-width a plotted as a function of a/7 for a range of values of A/Q/3 in
the case p = 3. Physically realisable solutions are denoted by thick solid lines, while solutions
that are not physically realisable are denoted by thick dashed lines. The curve 7| cos |~/ in

m/2 < a < 7w and the curve My(cos a)_1/2 in 0 < & < 7/2 are denoted by thin dashed lines.

Figure 13 : Typical scaled transverse rivulet profiles (H 4 h)/Q? in the case p = 3 plotted as
functions of y for (@) @ = 7/10, m/5 and 37/10 when A/QY® =1, and (b) a = 0.307 (twice)
and 37/4 when A/ Q"% = —1. Physically realisable solutions are denoted by solid lines, while

solutions that are not physically realisable are denoted by dashed lines.
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