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Abstract

We use the lubrication approximation to investigate the steady locally unidirectional gravity-
driven draining of a thin rivulet of Newtonian fluid with temperature-dependent viscosity down
a slowly varying substrate that is either uniformly hotter or uniformly colder than the sur-
rounding atmosphere. We consider the situation in which the Biot number (and hence the
variation of temperature across the rivulet) is small, but in which the variation of viscosity
with temperature is sufficiently strong that thermoviscosity effects appear at leading order in
the limit of small Biot number. Three different models for the dependence of viscosity on
temperature (specifically, the linear, exponential and Eyring models) are considered, but our

attention is concentrated on the more realistic exponential and Eyring models (which coincide
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at leading order in the limit of small Biot number). We show that the effect of cooling the at-
mosphere is always to widen and deepen the rivulet, while the effect of heating the atmosphere
is always to narrow and shallow it. We interpret our results as describing a slowly varying
rivulet draining in the azimuthal direction from the top to the bottom of a large horizontal
circular cylinder, and find that the behaviour of the rivulet is rather different on the upper
and lower parts of the cylinder (i.e. for sessile and pendent rivulets). Specifically, the effect of
strong cooling of the atmosphere is to produce a wide rivulet with finite uniform thickness on
the upper part of the cylinder, but a deep rivulet with finite semi-width on the lower part of
the cylinder. On the other hand, the effect of strong heating of the atmosphere is to produce

a narrow and shallow rivulet everywhere except near the top and the bottom of the cylinder.
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I. INTRODUCTION

Gravity-driven rivulet flows are ubiquitous in a wide range of practical situations, including
many industrial coating processes and geophysical flows. As a result in recent years there
has been considerable work on the gravity-driven draining of an isothermal rivulet down an
inclined substrate, much of it building on the pioneering analysis of steady unidirectional flow
of Newtonian fluid down an inclined plane in the presence of significant surface-tension effects
undertaken by Towell and Rothfeld [1]. Duffy and Moffatt [2] used the lubrication approxi-
mation employed by Allen and Biggin [3] to obtain analytically the leading-order solution in
the special case when the cross-sectional profile of the rivulet in the direction trans.verse to the
flow is thin. Duffy and Moffatt [2] calculated the shape of the rivulet (and, in particular, its
width and maximum height) as a function of ¢, the angle of inclination of the substrate to the
horizontal, for 0 < a < 7. Duffy and Moffatt [2] also interpreted their results as describing the
locally unidirectional flow down a locally planar substrate whose local slope « varies slowly
in the flow-wise direction and, in particular, used them to describe the flow in the azimuthal
direction round a large horizontal circular cylinder. Duffy and Moffatt’s [2] apprda.ch has been
used by Wilson and Duffy [4] to study the locally unidirectional flow of a rivulet down a slowly
varying substrate with variation transverse to the direction of flow, and by Wilson, Duffy and
Ross [5] to study the locally unidirectional flow of a rivulet of viscoplastic material down a
slowly varying substrate. Taking a somewhat different approach Smith [6] and Duffy and Mof-
fatt [7] obtained similarity solutions of the thin-film equations describing the steady draining
of a slender non-uniform rivulet from a point source or to a point sink on an inclined plane in
the cases of weak and strong surface-tension effects respectively.

However, in many situations one or more non-isothermal effects, including temperature

dependence of various fluid properties such as surface tension, viscosity and density, as well as



evaporation effects, are significant. Despite its practical importance there has thus far been
surprisingly little work on non-isothermal rivulet flow.

Holland, Duffy and Wilson [8] investigated the steady locally uniform (but not locally
unidirectional) flow of a thin rivulet of a fluid with constant viscosity whose surface tension
varies linearly with temperature down a slowly varying substrate that is either uniformly
hotter or uniformly colder than the surrounding atmosphere. In particular, they found that
the variation in surface tension drives a transverse flow that causes the fluid particles to spiral
down the rivulet in helical vortices (absent in the corresponding isothermal problem). They
also found that a single continuous rivulet can run from the top to the bottom of a large
horizontal circular cylinder provided that the cylinder is either warmer or significantly cooler
than the surrounding atmosphere, but that if it is only slightly cooler than the surrounding
atmosphere then a continuous rivulet is possible only for a sufficiently small volume flux.

Recently Wilson and Duffy [9] studied the unsteady flow of a thin rivulet of fluid with
constant surface tension whose viscosity varies with temperature down a substrate that is again
either uniformly hotter or uniformly colder than the surrounding atmosphere. In particular,
they derived the general nonlinear evolution equation for a thin film of fuid with an arbitrary
dependence of viscosity on temperature. They then used this equation to show that at leading
order in the limit of small Biot number the rivulet is isothermal, as expected, but that at leading
order in the limit of large Biot number (in which the rivulet is not isothermal) the governing
equation can, rather unexpectedly, always be reduced to that in the isothermal case with a,
suitable rescaling. These results were then used to give a complete description of steady flow of
a slender rivulet in the limit of large Biot number in two situations in which the corresponding
isothermal problem has previously been solved analytically, namely non-uniform flow down an
inclined plane, and locally unidirectional flow down a slowly varying substrate. In particular,

they found that if a suitably defined integral measure of the fluidity of the film is a decreasing



function of the temperature of the atmosphere (as it is for all three specific viscosity models
they considered) then decreasing the temperature of the atmosphere always has the effect of
making the rivulet wider and deeper. Wilson and Duffy [9] also review previous work on other
thin-film flows of fluid with temperature-dependent viscosity, including the work by Goussis
and Kelly [10] and Hwang and Weng [11] on the stability of a two-dimensional film draining
down a uniformly heated or cooled inclined plane, and the work by Reisfeld and Bankoff [12],
Wu and Hwang [13] and Oron, Davis and Bankoff [14] on the non-linear evolution of a film with
surface-tension and van-der-Waals effects. There has also been considerable work on thin-film
flows with a variety of other non-isothermal effects (see, for example, the excellert review by
Oron, Davis and Bankoff [14] for further details).

The present paper continues the investigation of non-isothermal rivulet flow of a, fluid with
temperature-dependent viscosity by considering steady locally unidirectional gravity-driven
draining of a thin rivulet of Newtonian fluid down a slowly varying substrate that is either uni-
formly hotter or uniformly colder than the surrounding atmosphere. We consider the situation
in which the Biot number (and hence the variation of temperature across the rivulet) is small,
but (in contrast to the situation studied by Wilson and Duffy [9]) in which the variation of
viscosity with temperature is sufficiently strong that thermoviscosity effects appear at leading

order in the limit of small Biot number.
II. PROBLEM FORMULATION

Consider initially the steady unidirectional gravity-driven draining of a thin symmetric rivulet
of constant (but unknown) semi-width & of Newtonian fluid with prescribed positive volume
flux Q > 0 down a planar substrate inclined at an angle @ (0 < @ < 7) to the horizontal,
shown in Fig. 1. We choose Cartesian axes Ozyz as indicated in Fig. 1, with the z axis in the

direction of flow and the y axis horizontal (transverse to the direction of flow) with respect



to which the substrate is denoted by z = 0. The velocity u = u(y, 2)i, pressure p = p(z,y, 2)
and temperature 7 = T'(z,y, z) of the fluid are governed by the familiar mass-conservation,
Navier-Stokes and energy equations. The fluid is assumed to have constant density p, surface
tension v and thermal conductivity ky,, but a non-constant viscosity u = pu(T) that depends
on temperature. On the solid substrate z = 0 the fluid velocity is zero and the uniform
temperature is prescribed to be T' = Tj. On the free surface z = h(y) the usual normal and

tangential stress balances, the energy balance
—kthVT ‘n = ath(T — Too) (1)

(where T, denotes the uniform temperature of the surrounding atmosphere, oy}, the surface
heat-transfer coefficient and n the unit normal to the free surface) and the kinematic condition
apply. At the edges of the rivulet Yy = *a where h = 0 the contact angle takes the prescribed
value .

Three different viscosity models will be considered in the present work, namely the linear
model

#(T) = po ~ NT - Tp) @)

(valid only for p > 0, i.e. pg > MT — Ty)), the ezponential model

MT -T,
p(T) = pgexp [— L—io)} ) 3
Ho
and the Eyring model
Mg /101
#(T) = po exp [_IE— (T = TZT())J : (4)

Note that all three models satisfy p = pg and dp/dT = )\ at T = To, where ) is a prescribed
positive constant, and hence all the models coincide up to and including O(T — Tp) in the limit

T—)TQ.



Analytical progress can be made by considering the case of a rivulet whose cross section is

slender (with, in particular, § <« 1), and thus we scale the system appropriately by writing

pgBA? pgBlt
=ly*, z=plz*, h=pl%, uv=""—u" Q="T1Q
v=r p Mo 1o @ (5)

P =P +pgBlp*, p=pop*, T =T+ (To~Tx)T",
where | = (v/pg)'/? is the capillary length in which g denotes acceleration due to gravity,
and po, is the uniform pressure of the surrounding atmosphere. Note that for simplicity
we have chosen g, the viscosity of the fluid at the substrate temperature T = T, as the
characteristic viscosity scale. This choice is most appropriate to experimental situations in
which the temperature of the substrate is held fixed while other physical parameters are varied.
An alternative choice more appropriate to experimental situations in which the temperature
of the atmosphere is held fixed would be to use the viscosity of the fluid at the temperature of
the atmosphere T' = T, as the characteristic viscosity scale. [15] The star subscripts will be
dropped immediately for clarity, and hereafter all quantities are non-dimensional unless it is

stated otherwise.

The leading-order versions of the governing Navier-Stokes and energy equations are

=sina + (pu;),, (6)
0= —py, (7)
0= —p, —cosa, (8)
T, =0, (9)

showing that the steady flow is the consequence of a balance between gravity and viscous effects,
that the pressure is hydrostatic, and that the transport of heat is dominated by diffusion in
the z direction. These equations are to be integrated subject to the boundary conditions of no

slip and prescribed temperature at the substrate z = 0,

u=0, T=1, (10)



balances of normal and tangential stress and an energy balance at the free surface z = h(y),

p=—H" (11)
u, =0 (12)
T,+ BT =0, (13)
where
B= 6;::*‘ (14)

denotes the non-dimensional Biot number, and prescribed constant contact angle at the edges

of the rivulet y = +a,

h=0, (15)

h' = Fl1. (16)

Primes denote differentiation with respect to argument. Note that the mass-conservation
equation and the kinematic condition are satisfied identically.

Integrating (8) subject to (11) at z = h yields
p=(h—2)cosa —h". (17)
Then (7) yields a third-order ordinary differential equation for 4, namely
(h" — heosa)' =0, (18)

showing that the profile of the rivulet is determined by a simple balance between surface-tension

and gravity effects. Solving (18) subject to (15) and (16) at y = +a yields

( coshma — cosh my

msinhma i 0sa<n/2,
2,2
hy) =4 ¢ 2ay if o=n/2 (19)

CoOs My — cos ma

- if 7/2<a<m,
\ msinma



where we have introduced the notation m = | cos a|'/2, in agreement with the results of Duffy
and Moffatt [2] in the isothermal case. In particular, the maximum thickness of the cross
section of the rivulet, denoted by Ay, = h(0), is given by

1 tanh (—@) if 0<a<n/2,

m 2

if a=n/2, (20)

>
B
I
N

1
— tan (@) if 7/2<a<m.
. m 2

For future reference it is useful to note that if a — 0o in 0 < o < 7/2 then
Bl [1- e ma=i)] (21)
m ’ :

ifma = min 7/2 < a < 7 then

1+ cosmy

ho~ — T SO5TY
m(m — ma)

— 00, (22)

while if @ — 0 then

2a

Integrating (9) twice subject to (10) at z = 0 and (13) at z = h yields

Bz

T=1- .
1 1+ Bh

(24)

Thus if we define an effective thermoviscosity number V, a non-dimensional measure of the
variation of viscosity with temperature, by

o MTo—To)B _ \(Tp — Too)Blas 5)
1o tokin

then the linear model (2) yields

~

Vz

N
p=l=g@ =D =1+70

(26)
(valid only for > 0, i.e. (B + V)hy > —1), while the exponential model (3) yields

4= exp (—%(T— 1)) = exp <lf;h) , 27)

9




and the Eyring model (4) yields

TV (T - 1) VnV 2

pow (_B(To Ty - Too)(T = 1))) =P (Vm(l T Bh) - sz) )
where we have defined V, = My B /1o = XToBlogn /pokn- Note that by definition Vi > 0 and
Vin > V. The effective thermoviscosity number V plays a role analogous to that played by
the effective Marangoni number used by Holland, Duffy and Wilson [8] for the corresponding
problem when thermocapillary effects are significant [16], but differs from the thermoviscosity
number V = V/B introduced by Wilson and Duffy [9] by a factor of B. Positive (negative)
values of V correspond to Ty > T (To < Two), 1-€. to situations in which the atmosphere is
colder (hotter) than the substrate and in which the viscosity at the free surface is accordingly
greater than (less than) the viscosity at the substrate. The case V = 0 corresponds to the
isothermal problem T = T in which the viscosity is constant, x = 1. Since in practice the
Biot number B is often small we shall hereafter restrict our attention to the solution in the
limit B — 0 for fixed V (and for the Eyring model also fixed f/m) In this limit the linear
model reduces to simply

p=1+Vz (29)
(valid only for Vho > —1), while both the exponential and the Eyring models reduce to

-

u=exp(Vz). (30)

Since the exponential and Eyring models coincide at leading order we shall hereafter refer to
the “exponential/Eyring” model. Note that all the models coincide up to and including O(V')
in the limit V — 0. It is important to realise that while the variation of temperature across the
rivulet is small in the limit B — 0 (specifically T = 14+ O(B)), when V = O(1) the variation of

viscosity with temperature is sufficiently strong that thermoviscosity effects appear at leading

order. This is fundamentally different from the situation considered by Wilson and Duffy [9]

10



in which V' = O(1) and hence V = O(B), in which viscosity is constant at leading order in the

limit B — 0.

Integrating (6) once subject to (10) at z = 0 yields

Once u has been calculated from (31) the local flux & = a(y) is given by

h .
@ :/ udz = 2B% ¢p3
0 3

where the function f = f(z,y) is the fluidity of the film defined by

3 fhrrh—3
f—h—3-/0\/0u_(11—)d2d2},

and hence the flux of fluid down the rivulet, Q, is given by

+a i +a
Q _ ﬁdy _ S o fh3dy_

-a 3 Joa

For the linear model (29) we obtain

sin o

V2

U =

[—Vz + (14 Vh)log(1 + f/z)]

and the fluidity f = f(V'h) is given by [18]

F(Vh) [~Vh(2 +3Vh) +2(1 + VR)?log(1 + )]

T 2(Vh)3
for Vh > —1, while for the exponential/Eyring model (30) we obtain

sin o

V2

U =

[Vh —14+(1+Vz—-Vh) exp(—Vz)]

and the fluidity f = f(Vh) is given by

- 3
Fh) = s

[((Vh-1)2 41— 2exp(~Vh)].

11
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For both models the expression for ) is obtained by substituting for h from-(19) into (34)
using the appropriate form of f (Vh) In general this expression is very lengthy and is therefore
omitted for brevity. However, simplified expressions are obtained in the special case of flow

down a vertical substrate (¢ = 7/2) and in the isothermal case (V = 0). When o = 7/2 we

Ve \*
2 +Va

(valid only for Va > —2) for the linear model (29), and

X ? ) . . 1/2 ’
Qv = % [(Va)2 —5Va+ 15] —2Va (—-?/_l) exp (—%) erf

obtain

_ 8Va
15

_ 8Va

4
@V 225

- 57172
(2 +VVa) ] tanh-1
a

[23(Va)? + T0Va +60]  (39)

15 a

for the exponential/Eyring model (30). Figure 2 shows QV* given by both (39) and (40)

plotted as functions of Va. For future reference it is useful to note that in this case for both

models
QVt = 2 (Vo) — 2 (Va)® + O(Va)® (41)
105 945
as Va — 0, for the linear model
~. 8(Va)d[15 .
4 — —
QV* oo% [ 5 log(2V a) 23] (42)

as Va — oo and QV* — 64/75 as Va — —21, while for the exponential/Eyring model

QV* ~ 4(Va)?/15 as Va — oo and

N 1/2 N
. Vv
QV* ~ 41 <__2_‘f) exp (—%) (43)
as Va — —oo. On the other hand, when V = 0 we obtain
sina
Q= WF(ma), (44)

where we have defined

15ma coth® ma — 15 coth? ma — 9macothma +4 if 0<a < 7/2,

F(ma) = :1,)—2—(ma)4 if a=mx/2, (45)

—15macot3 ma + 15cot? ma — 9macotma+4  if n/2<a<m,

12



recovering the corresponding results obtained by Duffy and Moffatt [2] in the isothermal case.
(Note that in the case & = 7/2 we have m = 0 and the factors of m* in (44) must be cancelled
before setting @ = 7/2.)

For any prescribed positive value of the flux, @ > 0, the possible rivulet semi-widths are the
positive solutions for a of the equation @ = Q, where Q is given by (34). Once a is known £ is
given explicitly by (19). In practice since the algebra required to calculate @ is rather lengthy
we used the symbolic algebra package MAPLE V running on a SUN ULTRA 10 to perform
the analytical evaluation of Q from (34) as well as the subsequent numerical calculation of g
from the algebraic equation Q=0Q.

Clearly the effect of cooling the atmosphere (V > 0) will be to cool the fluid and hence to
increase its viscosity and therefore decrease its velocity. Since the flux is constant this means
that cooling the atmosphere must increase the cross-sectional area of the rivulet. Conversely
heating the atmosphere (V < 0) must decrease the cross-sectional area of the rivulet. In fact,
stronger results hold, namely that the effect of cooling the atmosphere is always to widen and
deepen the rivulet, and that the effect of heating the atmosphere is always to narrow and
shallow it. These results can be shown as follows. When 0 < o < 7 it is straightforward to
show from (19) that 6h/da > 0, and from (32) with either (36) or (38) that du/0V < 0 and
0u/0h > 0 for both the linear and exponential/Eyring models, and so we can immediately

deduce from (34) with Q = () that

ta 9
Oa _ _ /“"' o7 >0 46
o W ; (46)
"« Oh0a Y

and then from (20) that ahm/BV > 0. In other words, except when a = 0 or @ = m, both a
and hy, are monotonically increasing functions of V, and so the general results described above
hold. Nevertheless, as we shall see subsequently, the behaviour of the rivulet is rather different

f0r0§a<7r/2,a=7r/2and7r/2<oe§7r.
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So far the analysis has been restricted to strictly unidirectional flow but, as Duffy and
Mofatt [2] describe, this solution is also the leading-order approximation to the local behaviour
of a rivulet with non-uniform width draining down a non-planar cylindrical substrate, where
« now represents the local inclination of the substrate to the horizontal, provided that o
varies sufficiently slowly, i.e. provided that the longitudinal aspect ratio € = IB/R, the reduced
Reynolds number p2g3%1*/u2 R, and the reduced Peclet number p?cgB414 /Ky, o R (where R is
a typical radius of curvature of the substrate) are sufficiently small. Thus we shall interpret
the results given subsequently as describing a slowly varying rivulet draining in the azimuthal
direction from the top (@ = 0) to the bottom (a = ) of a large horizontal circular cylinder as
sketched in Fig. 3. As Wilson and Duffy [4] showed, in the isothermal case there are multiple
branches of solutions for a in m/2 < a < 7, but of these only the one that connects smoothly
with the solution in 0 < a < 7/2 is physically realisable. We shall henceforth restrict our
attention to this latter type of solution.

In the remainder of this paper we shall concentrate our attention on the more realistic

exponential/Eyring model (30) for brevity.
III. RESULTS FOR THE EXPONENTIAL/EYRING MODEL

Figures 4, 5 and 6 show numerically calculated values of ¢ and hm plotted as functions of o/
for a range of values of V when Q=1 a range of values of Q when V = 1, and a range of
values of Q when V = —1, respectively. In particular, these figures confirm that a and A,
are monotonically increasing functions of V. The figures also show that the behaviour of the
rivulet is rather different on the upper and lower parts of the cylinder. Specifically, they show
that the effect of strong cooling of the atmosphere V — 00, in which the viscosity of the fluid
is large so that the velocity is small and hence the cross-sectional area of the rivulet is large,

is to produce a wide sessile rivulet with finite thickness on the upper part of the cylinder,
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but a deep pendent rivulet with finite semi-width on the lower part of the cylinder. On the
other hand, the effect of strong heating of the atmosphere V — —00, in which the viscosity of
the fluid is small so that the velocity is large and hence the cross-sectional area of the rivulet
is small, is to produce a narrow and shallow rivulet everywhere except near the top and the
bottom of the cylinder. All the qualitative features of the numerical results are captured by
the asymptotic results in the limits o, — 0,a—mV - 0, V> 00, V- —00, Q — 0 and
Q@ — oo presented below. The corresponding asymptotic results for the less realistic linear
model (29) are given in Appendix A for completeness. For brevity only the final asymptotic

results are given below, but in Appendix B we give the details of the analysis in one specific

case (namely the limit ) — oo) in order to indicate how the results were obtained.

A. The limit o — 0

In the limit @ — 0 we have a — oo, and substituting (21) into (34) reveals that

2f(VN)a 4

(47)

where the function f(V) is given by (38). The function f(V') is plotted in Fig. 7, and satisfies

_ 6exp(-V) 1 5o
f= _——(—f/)3 + 0 (V) as V — —oo, (48)
f=1—%+0(f/2) as V =0, (49)
3 1 ~
f=§+0(_f/—2) as V — oo. (50)

In particular, when V = 0 we recover the corresponding results in the isothermal case obtained
by Duffy and Moffatt [2]. Whatever the value of V, we have a — oo and hm — 1 with A
given by (21), and so near the top of the cylinder the rivulet always becomes wide with height

approaching unity everywhere except in boundary layers near y = +a.
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B. The limit o = 7

In the limit o & = we have a — 7, and substituting (22) into (34) using (38) reveals that the

behaviour of the solution depends on whether V > 0,V=00rV <0. When V > 0 we have

3m(n — )]/ I a0v 12
anr~ T — [—Qﬁ_:, y, hm~ m — 00, (51)

when V = 0 we have

G,Nﬂ'—[

_ \q1/3 A
o B Pt

1/3
30 ———a)] — 00, (52)

recovering the corresponding results in the isothermal case obtained by Duffy and Moffatt [2],

and when V < 0 we have

. B -o\]7 (-7
oD | (S ) [~ Tog(r — )]’ )
1 327 (7 — a)? [—log(m — )]
R G o

where W = W(z) is Lambert’s W function which satisfies W exp(W) = z. Relevant properties
of W are summarised in Appendix C. In particular, in (53) and (54) we have used the fact that
W(z) ~ log(—z) as z — 0~ on the relevant branch of W. Whatever the value of V, we have
a — m and hy — 0o with A given by (22), and so near the bottom of the cylinder the rivulet

always becomes deep with semi-width approaching .

C. The limit V — 0

In the limit of weak cooling or heating of the atmosphere V' — 0 the linear and exponen-
tial/Eyring models coincide up to and including O(V), and so for both models we obtain

sina

3

u =

h* . ~
[h3 - V+ O(VZ)J . (55)
Seeking solutions for A and a as regular expansions in powers of V in the form

h(y) = ho(y) + Vhi(y) + O(V?), a=ag+ Vay + o(V?), (56)
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where hg = ho(y) and ag are the solutions in the isothermal case obtained by Duffy and

Moffatt [2], we find that hy = h;(y) and a; satisfy
(h{ —hicosa) =0
subject to the boundary conditions
alhb(ag) + hi(ag) =0,
arhg(ao) + i (a0) =0,
h1(0) =0,
and the flux condition

+ao hi

2 0

hi— 20 gy =0,
[ i L dy =0

—ag

Hence we find that h;(y) = a,H,(y), where H] is given by

( coshmagcoshmy —1 |
if 0<a<n/2
sinh? mag sa<n/2
2 4 .2
ag + .
Hiy) = 25Y if o=r/2
aqy
1 —cos
co. r;mocosmy if r/2<a<m,
\ sSIn” mag
and so from (61)
+ao
/ ha dy
a; = =40

+ao '
12 h3H, dy

—agp

Evaluating (63) reveals that

0 = 24magC* — 50038 + 72mayC? — 55CS + 9mag
' T 48m2(2035 — 12magC? + 13CS — 3may)

(where C' = coshmag and S = sinhmag) if 0 < o < /2,

ap
a; = —

36
if @ =m/2, and

_ 24maoC* — 50C3S + 72magC? — 55C'S + 9mag
48m?(2C3S — 12magC? + 13CS — 3mayg)

a; =

17

(58)
(59)

(60)

(61)

(63)

(64)



(where C' = cosmay and S = sinmag) if 7/2 < o < 7. Notice that (65) and (66) can be
recovered from (64) by letting m — 0 and replacing m with im, respectively. If we write

hm = hmo + th1 + O(VQ) then Ay = ho(O) and Ay = hl(O) =a1H; (0), where

([ Loech? (T@> it 0<a<n/2,
2 2
1
Hi(0) =1 > if o=n/2, (67)
%sec2 (%) if 7/2<a<.

Figure 8 shows a; and hp,; plotted as functions of a/7 in the case Q = 1. In particular, Fig.
8 shows that a; > 0 and Ay; > 0 for all 0 < a < w. Thus the effect of weak cooling of the
atmosphere (V — 07) is always to widen and deepen the rivulet, while the eﬂ'éct of weak
heating of the atmosphere = 07) is always to narrow and shallow it, in agreement with
the general results established earlier. Note that a1 ~ ag/4 = 00, Ay ~ ag exp(—ag)/2 — 0
as @ = 0 (ap — 00), that a1 = a2/36, hy; = a}/72 at a = 7/2 (ag = (105Q/4)'/%), and that
a1 =T/48 — (1 —ag)?/20 + O(r —ag)*, by ~ (7/24)(m —ag) 2 5 c0asa— 7 (ap = =), and

hence that these solutions are uniformly valid near o = 0 but not near o — .

D. The limit V — oo

In the limit of strong cooling of the atmosphere V' — 0o the behaviour of the solution depends
on whether 0 < a < /2, a=7/20r7/2 < ac<nr. In 0 < a < 7/2 we have a — o0, and

substituting (21) into (34) using (38) yields

A~

AV 17 2
1
o~ SYm 00, hm~ —: (68)
2sina m
at a = m/2 we have a — oo, and (40) yields
~e\ 1/3 =~ 1/3
15QV 1/15QV
a~ (—f—) — 00, hp~ 5 (—462—) — 005 (69)
and in 7/2 < & < 7/2 we have ma — 7, and substituting (22) into (34) using (38) yields
. 1/2 = 1/2
T 1 (3wsina 4QVm
m T me ( QVm ) o~ (37rsina) B (70)
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Thus, in 0 < & < /2 we have a = O(V) and hy, = O(1), while in 7/2 < o < 7 we have
a = O(1) and hy = O(VY/2). The adjustments between these two different types of asymptotic
behaviour occur via boundary layers near o = 7 /2 of thickness O(V~2/3). Thus the effect of
strong cooling of the atmosphere is to produce a wide rivulet on the upper part of the cylinder
(0 < a < 7/2) and a deep rivulet on the lower part of the cylinder (7/2 < a < 7), in
agreement with the general result established earlier. Note that these leading-order solutions

are uniformly valid near both o = 0 and a = .

E. The limit V — —o0o

In the limit of strong heating of the atmosphere V — —co we have g — 0 and substituting

(23) into (34) using (38) reveals that

1 Q278 8 A
~ (—V)W (87rsin2 a) ~ ) log(—=V) =0 (71)
and
1 Q?I’}’S 4 .
fim ~ 2(—V)W (87r sin2a) ~ (V) log(=V) =0, (72)

where in (71) and (72) we have used the fact that W(z) ~ logz as  — oo. Thus the effect of
strong heating of the atmosphere is to produce a narrow and shallow rivulet, in agreement with
the general result established earlier. Note that these leading-order solutions are not uniformly

valid near either « = 0 or a = 7.

F. The limit Q — 0
In the limit of small flux Q — 0 we have a — 0 (and hence A — 0) and, since the linear and

exponential/Eyring models coincide up to and including O(h%) in the limit A —s 0, for both

models we obtain

[ﬁ—LM+omﬂ. (73)
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Hence substituting (23) into (34) using (73) reveals that

AN\ 14 o =\ 1/2
_ [ 105Q V ([ 105Q ~3/4
a= (4sina> + 35 (4Sma) +0(@"7) (74)
and
3\/4 o =\ 1/2
_ 1 [105Q Vv ([ 105Q ~3/4
fm = 5 (4sina) 7 (4sina) +O@T. (75)

In the case V = 0 we recover the corresponding results in the isothermal case obtained by
Holland, Duffy and Wilson [8]. Thus, whatever the value of V, a rivulet with small flux is
narrow and shallow. Note that these solutions are not uniformly valid near either o = 0 or

a=T.

G. The limit Q — oo

In the limit of large flux Q — oo the behaviour of the solution depends on whether V > 0,

~

V=0orV<o0 and on whether 0 < o < /2, a=mn/20r /2 <a<m. When V > 0 we have
3Qm3
2f(V/m) sina

~ o\ 1/3
an~ (@) — 00 if a=mn/2, (76)

— 00 if 0<a<n/2,

. 1/2
T) if m/2<a<m,

where the function f (V/ m) is given by (38) and

1
( — if 0<a<n/2,
m
=~ 1/3
1 [(15QV .
By ~ 5(%) —oo if a=mn/2, (77)
=5\ 1/2
(4 Vm) —oo if 7/2<a<m.
3rsina
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When V = 0 we have

and

( Vo 3
;?::a if 0<a<7/2
~\ 1/4
- <%52> e i a=n/2, (78)
: 1/3
%__;n%(f)_g%l%) if 7/2<a<m,
(1 .
- if 0<a<n/2,
m
=\ 1/4
1 (105 .
Ay ~ 2 (—4—Q) — oo if a=7/2, (79)
~ 1/3
(52:3?1712) —o0 if 7/2<a<m,

recovering the corresponding results in the isothermal case obtained by Holland, Duffy and

Wilson [8]. When V < 0 we have

o~

S 3
?Qm - if 0<a<n/2,

2f(V/m)sina

1 Qs 2 _ _

—W ~ — lo — £ _ 2,
(-V) ( 87 ) (V) §Q — o0 if a=x/

5 -1 .
T 4(=V) 327 sin? o r 2(=V) 1
m o m [_W <_ Q2Vom? )J “on T e lg@) i m2<asm,
(80)

where the function f(V/m) is again given by (38) and

1 if 0<a<r/2

m
1 Q2V8 1 _

~ —W ~———1logQ = 0o if a=n/2
ha ™ 5% (81) =7 5@ if a=n/ (81)
1 327 sin? o 1 ~
— [ W | ——— ~ —lo — o0 if 2<a<m.
\ 2<—v>[ ( Q?v‘fm?)] ) ¢ Esesm

Thus, in 0 < a < 7/2 we have a = O(Q) and Ay = O(1) for all V, while in 7/2 < a < =

we have a = O(1) for all V together with hym = O(QY?) when V > 0, hy = O(QY/3) when

V =0, and hy = O(log Q) when V < 0. The adjustments between these different types of

asymptotic behaviour occur via boundary layers near o = m/2 of thickness O(Q~2/3) when
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V >0 and O(QY/?) when V = 0. When V < 0 the situation is a little more complicated. In
this case the boundary layers in a have thickness O(log Q/Q) as a — 7/27 and O(log Q)2 as
o — /2%, while the boundary layer in Ay, has thickness O(log Q)2 as & — ©/2™; at leading
order there is no boundary layer in h,, as o — 7/2% in this case. Thus, whatever the value of
V, a rivulet with large flux is wide on the upper part of the cylinder (0 £ @ < 7/2) and deep
on the lower part of the cylinder (7/2 < a < 7). Note that these leading-order solutions are

uniformly valid near both & = 0 and o = 7.
IV. CONCLUSIONS

We used the lubrication approximation to investigate the steady locally unidirectional gravity-
driven draining of a thin rivulet of Newtonian fluid with temperature-dependent viscosity
down a slowly varying substrate that is either uniformly hotter or uniformly colder than the
surrounding atmosphere. We considered the situation in which the Biot number B (and hence
the variation of temperature across the rivulet) is small, but in which the variation of viscosity
with temperature is sufficiently strong that thermoviscosity effects appear at leading order
in the limit B — 0. Three different models for the dependence of viscosity on temperature
(specifically, the linear, exponential and Eyring models) were considered, but our attention was
concentrated on the more realistic exponential and Eyring models (which coincide at leading
order in the limit B — 0). We showed that the effect of cooling the atmosphere (V > 0) is
always to widen and deepen the rivulet, while the effect of heating the atmosphere (V < 0)
is always to narrow and shallow it. We interpreted our results as describing a slowly varying
rivulet draining in the azimuthal direction from the top to the bottom of a large horizontal
circular cylinder, and found that the behaviour of the rivulet is rather different on the upper
and lower parts of the cylinder (i.e. for sessile and pendent rivulets). Specifically, the effect of

strong cooling of the atmosphere (V — 00) is to produce a wide rivulet with uniform thickness
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approaching 1/(cos a)'/2 on the upper part of the cylinder, but a deep rivulet with semi-width
approaching m/|cos @'/ on the lower part of the cylinder. On the other hand, the effect
of strong heating of the atmosphere (V' — —o0) is to produce a narrow and shallow rivulet

everywhere except near the top and the bottom of the cylinder.
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APPENDIX A: ASYMPTOTIC RESULTS FOR THE LINEAR
MODEL

In this appendix we provide the asymptotic results for the linear model (29) corresponding to
those for the exponential/Eyring model (30) given in Sec. ITI. All the details of the derivations,
which broadly follow those for the exponential/Eyring model, are omitted for brevity. Note
that, unlike for the exponential/Eyring model where solutions are possible for all values of V,
for the linear model solutions are possible only if Vhy > —1 in the limit B — 0. In particular
solutions for which hy, — 1 are possible only for V > —1, while solutions for which hm — 00

are possible only for V > 0.

The limit oo - 0

In the limit oo — 0 equation (47) again holds, but with the function f(V) now given by (36)

for V > —1. The function f (V) is plotted in Fig. 7 and satisfies

e g - 2(1 + V) +0((1+V)2log(1 +7V)) as V — -1, (A1)
f=1—%+0(172) as V —0, (A2)
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>

_— .
j=32leV=3)  ,(lgV) V - 0. (A3)
Y% V2

The limit a —» 7

In the limit @ — 7 the behaviour again depends on whether V > 0, V=0oV <o

Specifically, when V > 0 we have

3n(m — ) e~2/3Qy3 1/2 [_ 3(m — ) } 1/2
aNW*[ 2QV W(Gw(ﬂ—a))J R v Gl I Y

and

3n(m—a) (e 23QV3\]7/? 3n(m — ) ~1/2
frm [ sav " (67r(7r - a))] ~ “Wlogﬁr ~a) — 00,  (A5)

and when V = 0 we recover the corresponding results in the isothermal case given by (52).
There are no corresponding results when V < 0, and so for the linear model the rivulet can

run all the way to the bottom of the cylinder only when V > 0.

The limit V — oo

In the limit of strong cooling of the atmosphere V — oo the behaviour of the solution again

depends on whether 0 < o < 7/2, a = m/2 or 1/2 < a < 7. Specifically we have

([ QVm? .
m if 0 S a < 7T/2,
—-1/3 =~ N\ 1/3
am! |—_w (90e-46/5QV4) ~ [ BV AT if o=r/2
45QV 16log V'
T 1 |37rsina e 23QV3m 12 iy 1 (97 sinalogf/ 12 .
E—W{QQVmW( 67 sina “m T m? —ZW i m2<asgm
(A6)
and
(1
~ if 0<a<mn/2,
-1/3 Ao\ 1/3
1 4 1/ 4
by ~d = | —=W (90e“46/5QV4) ~ = 5QVA — 00 if a=n/2,
45QV 2 \16logV

2
[?ﬂrsma (e-2/3Q173m)}”1/2 ( 8QVm

1/2
8QVm 67 sin a A) —oo if 7/2<a<n.

9rsinalogV
(A7)
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Thus in 0 < & < 7/2 we have a = O(V/ log V) and hy, = O(1), while in 7/2 < & < 7 we have
a=0(1) and by, = O(V/ log V)2 and the adjustments between these two different types of

asymptotic behaviour occur via boundary layers near o = m/2 of thickness O(log V JV)?3.

The limit Q — oo

In the limit of large flux Q — oo the behaviour of the solution again depends on whether

V>O,V=00rV<Oandonwhether0§oz<7r/2,a=7r/20r7r/2<ag7r. When V > 0

we have
A3
( ?Qm - 00 if 0<a<n/2,
2f(V/m)sina ‘
-1/3 ~a\ 1/3
4 —46/5 = " 4 45QV . _
a~ < [WW (90e QV ) Tlog O — 00 if a=mn/2,
T 1 (3n sinaW e 23QV3m 12 ® 1 (3rsinalogQ 1/ i or/j2<ax
L m m? | 2QVm 67 sin o m  m? 20Vm T a=T
(A8)
where the function f(V/m) is given by (36) and
(1 .
il if 0<a<n/2,
m
-1/3 =2\ 1/3
1 4 —46/5 74 1/45QV . _
Ay ~ 5 [WW (90e QV ) 2 \ 11020 — 0 if a=n/2,
, ~2/37573 -1/2 = A 1/2
37r_sinaW e C?V m N _EQVL_ Soo if m2<a<n
8QVm 67 sin o 3msinalog Q

(A9)
When V = 0 we recover the corresponding results in the isothermal case given by (78) and

(79). When V < 0 we have

- .
a~v 39 L (A10)
2f(V/m)sina m

for 0 < o < 7/2, but there are no corresponding solutions for @ = 7/2 and 7/2 < a < 7. Thus,
in0 < a<7/2 wehave a = O(Q) and hy, = O(1) for all V, while in T/2 < a < 7 we have
a = 0(1) for all V > 0 together with Ay = O(Q/log Q)2 when I > 0 and b = O(Q1/3)

when V = 0. The adjustments between these different types of asymptotic behaviour occur
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via boundary layers near = /2 of thickness O(log Q/Q)*/3 when V > 0 and O(Q~Y/ %) when

~

V=0

APPENDIX B: DETAILS OF THE ASYMPTOTIC ANALYSIS
OF THE SOLUTION FOR THE EXPONENTIAL/EYRING
MODEL IN THE LIMIT Q — oo

In this appendix we give the details of the asymptotic analysis of the solution for the expo-
nential/Eyring model in the limit Q — oo leading to the results given in Sec. IIL.G.

In the limit Q — oo the behaviour of the solution depends on whether ¥V > 0,V =0
or V < 0 and on whether 0 Sa<n/2,a=n/2007/2 < a <7 In eacil case once
the asymptotic behaviour of @ is known the corresponding behaviour of Ay, can be calculated
immediately from (20). The calculations in the case |V — 0 are omitted for brevity.

When 0 < a < 7/2 we have ¢ — oo and from (21) we have A ~ 1/m (except in boundary
layers near y = +a). Whatever the value of V from (32) we obtain @ ~ f (V' /m) sin a/3m3;
therefore from (34) we have Q ~ 2af (V' /m)sin a/3m?, and so

3Qm3
2f(V/m) sina

a ~

— 00. (B1)

When a = 7/2 we have ¢ — 0o and from (19) we have h = (a2 — ¥?)/2a — oo (except
in boundary layers near y = +a). When V > 0 from (32) with (38) we obtain @ ~ h2)V;

therefore from (34) we have

1 +a a2—y2 2 4a3
o~ [ () vt 52
and so
~ i\ 1/3
15QV
a~ (——4Q—) — 00. (B3)

When V < 0 from (32) with (38) we obtain @ ~ —2 exp(—Vh)/V3; therefore from (34) we have

2 [too V(a? - y?) AT [ Va /2 Va
QN—ﬁ/—oo exp (—T dy = W T €Xp B R (B4)
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and so a satisfies

. 1/2 N =
Va Va QV*4
(‘?) exp (‘7) W (B5)
and hence
1 Qv 2 -
~ W ~—2_] , B6
e ( 8 ) ) B9 (B6)

where we have used the fact that W(z) ~ logz as £ — oco. Equations (B3) and (B6) can also
be obtained directly by using the appropriate asymptotic expansions given in section 2 of the
exact expression for @) when a = 7/2 given in (40).

When 7/2 < & < 7 we have a — 7/m~ and from (22) we have h ~ (1 + cosmy)/m(m —
ma) — oo (except in boundary layers near y = ta). When V > 0 from (32) vﬁth (38) we

obtain % ~ sina h?/V; therefore from (34) we have

sin o +7f/m(1+cosmy)2 3rsina
~ 2 ————) dy~orone B7
Q Vv /_W/m m(m — ma) y Vm3(m — ma)? (B7)
and so
a l_i 3rsina 12 BS
m  m?2\ QVm ) (B8)

When V < 0 from (32) with (38) we obtain @ ~ —2 sinaexp(—Vh)/V3; therefore from (34)

we have
2sina [tm/m V(1 + cos my)
Q~ -2 /“ O (—¥—_m ey ) (B9)

Using Laplace’s method (see, for example, Bender and Orszag [19]) gives

+m/m V(1 + cos my) 2ym 2V ~1/2 2V
/_W/m P (_— m(m — ma) dy ~ m —m(7r — ma) ®*p _m(7r ~ ma) (B10)

and so a satisfies

-1/2 A N
2V 2V QV3m
(—m(Tr - ma)) P (_m(w — ma)) - 4/msina’ (B11)
and hence
T 4(=V) 327 sin? R 2(=V) ~ 1
T Tme [—W (—_W)J TmT T me (log @)™, (B12)

where we have used the fact that W(z) ~ log(—z) as  — 0~ on the relevant branch of W.
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APPENDIX C: LAMBERT’S W FUNCTION

In this appendix we summarise the properties of Lambert’s W function, W = W(z), which
is defined to be a solution of W exp(W) = z. There are infinitely many complex branches of
W(z), but for the present purpose we can restrict our attention to the real branches of W(z)
shown in Fig. 9. These consist of a monotonically increasing branch defined on [—1/e, o0)
and satisfying W(—1/e) = —1, W(0) = 0 and W(z) ~ logz as £ — oo, and a monotonically
decreasing branch defined on [—1/e,0) and satisfying W(—1/e) = —1 and W(z) ~ log(—z) as
z—07.

In deriving the asymptotic results presented in the present work we made use of the fact
that for any n # 0 the solution of the algebraic equation F"exp(F) = z can we written in

terms of W as

F(z) =nW (%:El/"> , (C1)

and that the solution of the algebraic equation G™log G = z can be written in terms of W as

G(z) = exp (%W(nm)) = (Wr(zzx»l/". (C2)
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FIGURE CAPTIONS

FIG. 1 : The geometry of the problem.

FIG. 2 : The function QV* given by (39) for the linear model and by (40) for the expo-
nential/Eyring model plotted as functions of Va. Note that for both models QV* satisfies
QV* = 4(Va)*/105 — 4(Va)®/945 + O(Va)® as Va — 0, and that for the linear model QV* is

defined only for Va > —2.

FIG. 3 : Sketch of a slowly varying rivulet draining in the azimuthal direction from the top

(@ = 0) to the bottom (a = ) of a large horizontal circular cylinder.

FIG. 4 : (a) The semi-width of the rivulet a, and (b) the maximum thickness of the rivulet
hm plotted as functions of a/7 for a range of values of V in the case Q = 1. The leading-order
asymptotic values in the limit V' — oo given by a ~ m/|cos a|'/? for T/2 < a < 7 and by

hm ~1/(cosa)/? for 0 < a < 7/2 are marked with dashed lines.

FIG. 5 : (a) The semi-width of the rivulet a, and (b) the maximum thickness of the rivulet
hm plotted as functions of a/7 for a range of values of Q in the case V = 1. The leading-order
asymptotic values in the limit @ — oo given by a ~ 7/|cos a|'/? for T/2 < a < 7 and by

hm ~1/(cosa)/2 for 0 < a < 7/2 are marked with dashed lines.
FIG. 6 : As for Fig. 4 except that V = —1.

FIG. 7 : The functions f(V) given by (36) for the linear model and by (38) for the expo-
nential/Eyring model plotted as functions of V. Note that for both models f(V) satisfies

f=1 —V/4+O(I72) as V — 0, and that for the linear model f(V) is defined only for V > —1.
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FIG. 8 : (a) a; and (b) Am:, the first-order corrections to the semi-width and the height of the
rivulet respectively in the limit of weak cooling or heating V — 0, plotted as functions of afn

inthe case Q = 1.

FIG. 9 : The real branches of Lambert’s W function, W = W(z).
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Figure 1, Wilson and Duffy, Phys. Fluids
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Figure 3, Wilson and Dufty, Phys. Fluids



Figure 4(a), Wilson and Duffy, Phys. Fluids
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Figure 5(a), Wilson and Dufly, Phys. Fluids
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Figure 6(a), Wilson and Dufly, Phys. Fluids
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