Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

On a coagulation and fragmentation equation with mass loss

Banasiak, J. and Lamb, W. (2006) On a coagulation and fragmentation equation with mass loss. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 136 (6). pp. 1157-1173.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A nonlinear integro-differential equation that models a coagulation and multiple fragmentation process in which continuous and discrete fragmentation mass loss can occur is examined using the theory of strongly continuous semigroups of operators. Under the assumptions that the coagulation kernel is constant, the fragmentation-rate function is linearly bounded, and the continuous mass-loss-rate function is locally Lipschitz, global existence and uniqueness of solutions that lose mass in accordance with the model are established. In the case when no coagulation is present and the fragmentation process is binary with constant fragmentation kernel and constant continuous mass loss, an explicit formula is given for the associated substochastic semigroup.