Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

On a coagulation and fragmentation equation with mass loss

Banasiak, J. and Lamb, W. (2006) On a coagulation and fragmentation equation with mass loss. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 136 (6). pp. 1157-1173.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A nonlinear integro-differential equation that models a coagulation and multiple fragmentation process in which continuous and discrete fragmentation mass loss can occur is examined using the theory of strongly continuous semigroups of operators. Under the assumptions that the coagulation kernel is constant, the fragmentation-rate function is linearly bounded, and the continuous mass-loss-rate function is locally Lipschitz, global existence and uniqueness of solutions that lose mass in accordance with the model are established. In the case when no coagulation is present and the fragmentation process is binary with constant fragmentation kernel and constant continuous mass loss, an explicit formula is given for the associated substochastic semigroup.