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Abstract

Similarity solutions that describe the flow of a slender non-uniform rivulet of non-
Newtonian power-law fluid down an inclined plane are obtained. Rivulets driven by
either gravity or a constant shear stress at the free surface are investigated, and in both
cases solutions are obtained for both weak and strong surface-tension effects. We find
that, despite the rather different physical mechanisms driving the flow, the solutions for
gravity-driven and shear-stress-driven rivulets are qualitatively similar. When surface-
tension effects are weak there is a unique similarity solution in which the transverse
rivulet profile has a single global maximum. This solution represents both a diverging
and thinning sessile rivulet and a converging and thickening pendent rivulet. On the
other hand, when surface-tension effects are strong there is a one-parameter family of
similarity solutions in which the transverse profile of a diverging and thinning rivulet has
one global maximum, while that of a converging and thickening rivulet has either one
global maximum or two equal global maxima. We also show how the present similarity
solutions can be modified to accommodate a fixed-contact-angle condition at the contact
line by incorporating sufficiently strong slip at the solid/fluid interface into the model.



1 Introduction

Rivulets occur in a wide variety of practical situations ranging from various geophysical
flows to industrial devices such as condensers and heat exchangers. In many situations
(such as, for example, many geophysical flows) gravity is the main driving force, while in
others (such as, for example, an oil film on the wall of an aero-engine bearing chamber,
ice accreting on an aircraft wing, or rain on the windscreen of a moving car) the surface
shear and/or the pressure gradient due to an external airflow play a significant role.
While some of the fluids encountered in practice are essentially Newtonian, many exhibit
significantly non-Newtonian behaviour.

The pioneering analysis of the flow of a non-uniform rivulet of Newtonian fluid was
performed by Smith [1] who obtained a similarity solution of the thin-film equation
describing the steady gravity-driven draining of a slender non-uniform rivulet of New-
tonian fluid from a point source on an inclined plane in the case of weak surface-tension
effects. Smith’s [1] solution predicts that the width of the rivulet increases or decreases
like the 3/7th power of the distance measured down the plane from the source and
that the height of the rivulet correspondingly decreases or increases like the —1/7th
power, and is in good agreement with his own experimental measurements and with
the numerically calculated solutions of the appropriate thin-film equation obtained by
Schwartz and Michaelides [2]. Subsequently Duffy and Moffatt [3] performed the corre-
sponding analysis in the case of strong surface-tension effects and, in particular, found
that Smith’s exponents are modified to 3/13th and —1/13th powers respectively. Re-
cently Wilson, Duffy and Davis [4] obtained the corresponding similarity solutions for
a slender dry patch in a fluid film draining under gravity down an inclined plane. All
of these similarity solutions predict a varying contact angle at the contact line; Wil-
son, Duffy and Davis [4] showed that the rivulet similarity solutions of Smith [1] and
Duffy and Moffatt [3] (but not, interestingly, their own dry-patch similarity solutions)
can be modified to accommodate a fixed-contact-angle condition at the contact line by
incorporating sufficiently strong slip at the solid/fluid interface into the model. Wilson
and Burgess [6] generalised Smith’s [1] similarity solution to flow of a power-law fuid.
Coussot and Proust [5] derived the thin-film equation for a slender non-uniform rivulet
of a Herschel-Bulkley material. This equation does not admit a similarity solution, but
Coussot and Proust [5] did obtain a similarity solution to an approximate version of
their equation which is in qualitative (but not quantitative) agreement with a series of
their own experimental measurements made using various muds. Subsequently Wilson
and Burgess [6] found that for the two experiments for which Coussot and Proust’s [5]
unapproximated equation is appropriate, numerically calculated solutions and the ex-
perimental measurements are in quantitative agreement.

‘Towell and Rothfeld [7] pioneered the investigation of the steady unidirectional flow
of a uniform rivulet of Newtonian fluid down an inclined plane, and their approach was
used by Rosenblat [8] to study uniform (but not unidirectional) flow of a viscoelastic
fluid, and by Alekseenko, Geshev and Kuibin [9] to study unidirectional flow down the
lower surface of an inclined circular cylinder. Duffy and Moffatt [10] used the lubrication
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approximation employed by Allen and Biggin [11] to obtain analytically the leading-
order solution for Newtonian rivulet flow down a planar substrate in the special case
when the cross-sectional profile of the rivulet in the plane transverse to the flow is thin,
and then interpreted their results as describing the locally unidirectional flow down a
locally planar substrate whose local slope varies slowly in the flow-wise direction and,
in particular, used them to describe the flow in the azimuthal direction round a large
horizontal circular cylinder. Recently this approach has been extended to investigations
of locally unidirectional flow down a substrate with variation transverse to the direction
of flow by Wilson and Duffy [12], of locally uniform (but not locally unidirectional) flow
down a uniformly heated or cooled substrate when thermocapillary effects are significant
by Holland, Duffy and Wilson [13], and of locally unidirectional flow of a rivulet of
viscoplastic material by Wilson, Duffy and Ross [14].

As far as the authors are aware there have been no analytical studies of shear-stress-
driven rivulets; however there has been work on a variety of other thin-film flows in
which the surface shear and/or the pressure gradient due to an external airflow play a
significant role. For example, Moriarty, Schwartz and Tuck [15] considered the unsteady
flow of a two-dimensional drop on a horizontal substrate spreading under the action
of a jet of air blowing either vertically downward onto the drop (in which case the jet
was modelled as a non-uniform pressure distribution) or horizontally over the drop (in
which case it was modelled as a constant shear-stress distribution). King, Tuck and
Vanden-Broeck [16] studied steady two-dimensional periodic waves on a fluid film on
an inclined plane caused by a jet of air flowing upwards over it. Their model (which
is based on thin-aerofoil theory) allows the external pressure gradient to depend on
the shape of the free surface of the film, but assumes that the shear stress at the free
surface is constant. King and Tuck [17] studied the corresponding problem for a ridge
of fluid of finite width on an inclined plane. Myers and Thompson [18] formulated the
general evolution equation for a three-dimensional fluid film driven by gravity, surface
tension, external pressure gradient and surface-shear-stress effects, and described its
steady two-dimensional solution in the special case of no external pressure gradient and
a constant surface shear stress. McKinley, Wilson and Duffy [19] studied the quasi-
static spreading of both a two-dimensional and an axisymmetric three-dimensional drop
(either with or without a dry patch at its centre) due to a jet of air acting normally to the
substrate; the jet of air was modelled as a parabolic pressure distribution, and sessile,
pendent and zero-gravity situations were considered. Recently McKinley and Wilson [20,
21] investigated the linear stability of both two-dimensional and axisymmetric three-
dimensional situations in the absence of gravity effects.

In this paper we follow the approach of Smith (1] and Duffy and Moffatt [3] and
obtain similarity solutions that describe the flow of a slender non-uniform rivulet of non-
Newtonian power-law fluid down an inclined plane. Rivulets driven by either gravity or
a constant shear stress at the free surface are investigated, and in both cases solutions
are obtained for both weak and strong surface-tension effects.



2 Problem Formulation

Consider the steady flow of a symmetric thin rivulet of a power-law fluid with uniform
density p, constant surface tension o, and variable viscosity g = pog™ !, where pq is a
constant, ¢ is the local shear rate and N > 0 is the power-law index, on a planar substrate
inclined at an angle a (where 0 < o < 7) to the horizontal. When 0 < N < 1 the fluid
is shear thinning, when N > 1 it is shear thickening and when N = 1 the special case of
a Newtonian fluid with constant viscosity pg is recovered. Cartesian coordinates (z,y,2)
with the z-axis down the line of greatest slope and the z-axis normal to the plane are
adopted. We shall consider rivulets driven by either the x-component of gravity gsin o
or a constant shear stress 7' in the z-direction on the free surface. Since changing the
sign of gsin o or T' simply corresponds to reversing the direction of the z-axis, we shall
assume hereafter that gsina > 0 or T' > 0, as appropriate. The edges of the rivulet are
at y = £y.(z). The geometry of the problem is shown in Figure 1. Making the familiar
lubrication approximation the velocity (u,v,w), pressure p and free-surface position
z = h(z,y) satisfy the governing equations

Ug + vy + w, = 0, (1)
(buiz). — ps + pgsina = 0, (2)
(uv:)z = py =0, (3)

—p, — pgcosa = 0, (4)

subject to the boundary conditions

u=v=w=0 (5)

on the substrate z = 0 and
p=—oV2h, (6)
pu, =T, pv, =0 (7)

on z = h, together with the kinematic condition on z = k, which can be written in the

form
V- (a,v) =0, (8)

where N N
12:/ udz, 77:/ vdz (9)
0 0

are the local fluxes in the z and y directions respectively. If we write P, = Dz — PG Sin «,
§ =T — Py(h — 2) and 5o = T — P,h then integrating (2)-(4) subject to the boundary
conditions (5)—(7) yields

1

MON/SA =N
u = ST N ds, 10
P /. (10)

)



_.11\7 s B
v = —”"ngy /SO (G-T)7r'7 d3, (11)

p = pgcosalh — z) — aV?2h, (12)

where the scalar measure of the local stress, 7 = ug, is given by

v; :
r = {32 + 2T - 3)2] , (13)
and hence
4o )
a=- / §(8—T)rF dg, (14)
z “S0
1
4. )
7= —“]")3 / Dy (3 — T)2 7 da. (15)
so

The kinematic condition (8) yields the governing partial differential equation for h. The
prescribed constant total flux of fluid across any section = constant, denoted by Q, is

given by
+ye
Q= ady. (16)
—ye

From now on we consider a slender rivulet that varies much more slowly in the 2-
direction than in the y-direction; for such a rivulet y-derivatives are much larger than
z-derivatives, P, ~ —pgsina, and 7 ~ plu,| = |s|, and so at leading order (10)—(15)
can be evaluated explicitly to yield

1
N/'L_ﬁ 41 N+l
= W pgama ool T =117, )
L N+1 N+1
Ny Vpy | Is|™F —[so| & Y 1N
oo (Pgsoinoj2 [ N+1 ~T (sl = solsa ) | (18)
p=pgcosalh—z) — ohy,, (19)
Nug ¥ NTZ v [ 8o T
a=—t + Jsol -~ @
(pgsina)? | (2N +1)(N +1) 2N+1 N+1
1
-~ 2Nl i 2
5 Nﬂo- Dy 2N“T™F — sols0 N 56 2T sy LT (21)
(pgsina)?® | (2N + 1)(N + 1) 2N+1 N+1

Setting 7' = 0 in (8) and (16) the governing equations for a slender gravity-driven
rivulet are found to be

) =0 (22)

[h,zl\zlv+l (pg cosah — ahyy)y]y — pgsin o [h N
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and

1
N pgsina\ ¥ rtve vy
Q“2N+1( = ) /_yehzv dy. (23)
Note that in the special case N = 1 equations (22) and (23) reduce to the equations
describing the flow of a gravity-driven Newtonian rivulet studied by Smith [1] and Duffy
and Moffatt [3].

Taking the limit gsina — 0 in (8) and (16) the governing equations for a slender
shear-stress-driven rivulet are found to be

1 T
3 [h3(pg cos ah — ohyy)y]y ) [hz}w =0 (24)
and .
1/T\T r+ye
=== h? dy. 25
=3 (1) [ way (25)

Note that (24) (but not (25)) is independent of N.
For both problems the governing equations are in the form

1

3 [hA(pg cosah — Jhyy)y]y - F [hB]z =0 (26)
and T
Q=0 [ "nay, (27)
e
where in the gravity-driven case
1
2N +1 pg sin o N pgsina\ ¥
A = = = = 2
B N’]: 3 9 2N +1 Lo ’ (28)
while in the shear-stress-driven case
1
T 1 (T\¥
A - B — 2 = — = — JE— .
3, , F 5 g 5 (Mo) (29)

Here we shall consider only rivulets that are symmetric about y = 0, and impose the
regularity conditions
hy = hyyy =0 (30)

at y = 0; in addition A satisfies the contact-line condition
h=20 (31)

at y = yo. We might also wish to impose a fixed-contact-angle condition in the form
hy = —0 at y = y., where 0 is a (small) prescribed constant contact angle. However,
as we shall see, the similarity solutions derived in sections 3 and 4 cannot, in general,
satisfy a condition of this form. In section 5 we show how these similarity solutions can
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be modified in a small region near to the contact line in order to accommodate such a
condition.

For both problems we shall consider both the case of weak surface-tension effects in
which the typical transverse lengthscale (i.e. in the y-direction) is much greater than
(0/pg| cosa])/? so that gravity dominates surface tension in the pressure (as studied by
Smith [1] for a gravity-driven Newtonian rivulet), and the case of strong surface-tension
effects in which the typical transverse lengthscale is much less than (o/pg|cos al)l/?
so that surface tension dominates gravity in the pressure (as studied by Duffy and
Moffatt [3] for a gravity-driven Newtonian rivulet). Specifically, for weak surface-tension
effects equations (26) and (27) with the surface-tension term oh,, neglected are valid
provided that the appropriately defined longitudinal and transverse aspect ratios (that
is, in the z-y and y-z planes respectively) are sufficiently small:

Q A-B+1 (pg|cosa|)B ~ j, TTBTT
(— PITCOSal ) j—(as) <1 (32)
o) (77 ’
Q B—-A+1 F B+1 A+119+1
[(5) pg| cosal <L (33)

and provided that the transverse lengthscale is sufficiently large:

Q\“*7B*! [ pg|cosall B) A¥5T1 o 3
[(5) ( F > pg|cosa|) ’ (34)

where [ denotes a typical longitudinal lengthscale (i.e. in the z-direction). For strong
surface-tension effects equations (26) and (27) with the gravity term pg cos ah neglected
are again valid provided that the relevant aspect ratios are sufficiently small:

(@) () ] T 5
S 5 RS -

and provided that the transverse lengthscale is sufficiently small:

Q A-B+1 7 g\ B TFET o i
[(5) (.—7-:> } < (pg|cosa|) ' (37)

For both problems we seek a similarity solution for 4 in the form

Y

Ye()

h = b(c,’L‘)mG(Tl), Where n= and Ye = (Cx)nu (38)



in which the constants b, ¢, m and n are to be determined, and in which G satisfies the

regularity conditions
G'(0) =G"(0) =0, (39)

and the contact-line condition

G(1) =0. (40)
Evidently we must have y, > 0 and h > 0 for this solution to be physically relevant.
We shall consider only solutions for which ¢z > 0, and since we shall find that m < 0
and 0 < n < 1 in all the cases considered in the present work this means that solutions
for ¢ > 0 represent diverging and thinning rivulets in £ > 0 and solutions for ¢ < 0
represent converging and thickening rivulets in < 0. Furthermore, since we will always
be able to choose b > 0 only solutions with G > 0 everywhere on the interval [0, 1] are
physically relevant.

3 General Solution for Weak Surface Tension

When surface-tension effects are weak the terms [Ah,], and [AP], in (26) balance pro-
vided that (A — B + 1)m = 2n — 1, and the flux Q in (27) is independent of z provided
that Bm +n = 0, and so

B 1 B

T TA+B+1 "TA+B+1 (41)

If we choose

1
3 ATB+T
b (”_f c ) (42)
pg lcosa
then the governing equation for G is
(646" + snG®] =, (43)
where
5 =sen (=), 44
B\ cos o (44)

which can be integrated twice subject to (39) and (40) to yield

(45)

G:[S(A_B+1)(1—n)

2

1
A—-B+1
2

For both of the problems considered here we shall find that real and positive solutions
for G are possible only when S = 1, which means that ¢ and cosa must have the same
sign and hence that solutions with ¢ > 0 correspond to sessile rivulets and those with
¢ < 0 to pendent rivulets. The flux is given by

Q=6 "G an, (46)
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so that

3BF ¢ [\F5m

@=9gI (pg(A+B+1) cosa) ’ (47)

where 5

+1 H[S(A—B+1 A=BT
r= [ eray - [V [2AZELD |7 an (45)
and hence c is given by
o = P9LA+ B+ 1) cosal (Q)—t“‘ﬁ” (19)
B 3BF GI

3.1 Gravity-Driven Rivulet

This is the case investigated by Wilson and Burgess [6]. In this case A = B = (2N +1)/N

and so
N 2N +1

BN+2 T BN+2
Note that, as Wilson and Burgess [6] pointed out, neither m nor n change a great deal
as N is varied. Specifically, m varies monotonically between 0 in the limit N — 0 and
—1/5 in the limit N — oo taking the value —1/7 at N = 1, while n varies monotonically
between 1/2 in the limit N — 0 and 2/5 in the limit N — oo taking the value 3/7 at
N = 1. A real and positive solution for G is possible only if § = 1, in which case

(50)

2N +1
b—5N+2ctana (51)
and .
G=(1-m) (52)
so that G(0) = 1/2 and G'(1) = —1. Thus
Q- NI pgsin o %[2N+1 tan ]%i (53)
TOANTI\ BN + 2500
where
+1r] 41 1\ 2 oD (3N
= [ ge-n] T a=5) ikl 2 (54
! r(%3?)
and so

1 N
5N 2N+1 2N+1
2N +1 pgsin o NI
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Note that Wilson and Burgess [6] did not evaluate I explicitly and that their version of
(55) contains a typographical error. Figure 2 shows [ = J (N) given by (54) plotted as a
function of N. As Fig. 2 shows, I is a monotonically increasing function of N satisfying

1\ “F
I~ (5) VAN =0 (56)
as N —0,I=4/35when N =1, and I — 4/15 as N — co. Hence

444 cot o

pg sin « (57)

(which is independent of Q) in the strongly shear-thinning limit N — 0,

_ Tceota ( 105,u0Q)% (58)

°= 3 4pgsin o

when N =1, and

pome 12y

(which is independent of p, g and to) in the strongly shear-thickening limit N — oo.
Note that from (32)-(34) this solution is appropriate provided that

1
NOQN 5NT2
(pg sin a tan a[2N+113N+1) <1, (60)
1

poQY | tan o[3N+1 582
( pgsin q [3N+1 <1, (61)
,U'OQNlQN‘H #ﬁ) o % ;
pgsinaftanaf1) 7 \pglcosal) (62

In the special case N = 1 we recover results equivalent to those of Smith [1] for a
Newtonian rivulet.

3.2 Shear-Stress-Driven Rivulet

In this case A =3 and B=2andsom = —1/6 and n = 1/3. Again a real and positive
solution for G is possible only if S = 1, in which case

cTr :
b= (Zpg cos a) (63)
and )
G =(1-n%z, (64)
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so that G(0) =1 and G'(1) = —co. Thus

1
T\Y T
=[=) — 6
@ (/m) 3pgcosa’ (65)
where we have made use of the fact that
+1 4
I=["(-n)dn=1, (66)
-1 3
and so .
_ M0\~ 3Qpgcosa
‘= (T) T (67)
Note that from (32)—(34) this solution is appropriate provided that
1
Qpg| cos o (uo)# 3
el 1
[ T2 \T <b (68)
3
_ 1
(pgl cos o l) <5 (%)
1 1
Qpg|cosall (Mo) v]3 o 2
[ T T > pglcosal) (70)

In the special case N =1 we obtain new results for a Newtonian rivulet.

4 General Solution for Strong Surface Tension

When surface-tension effects are strong the terms [A*hyyyly and [hP], in (26) balance
provided that m(A4 — B +1) = 4n — 1, and the flux Q in (27) is again independent of z
provided that Bm + n = 0, and so

1 B (71)
e n—=-——————.
A+3B+1’ A+3B+1
If we choose .
A—B+1
b= (M) (72)
o
then the governing equation for G is
(GG — snG®] =0, (73)
where
S = sgn(c), (74)
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which can be integrated once subject to (39) to yield the third-order equation
G4 BG" — Sp=0. (75)

The flux is again given by (46) so that

A—BF1
Q=01 (3”'c'f ) , (76)
where o
Iz/;l GB d77, (77)
and hence c is given by
o Q A—g+l
f=57 (Gr) (78)

Unlike in the case of weak surface tension we cannot, in general, obtain the solution of
the governing equation (75) for G in closed form. However, a straightforward Taylor
expansion about 7 = 0 where G = G(0) = G| reveals that

G = Go [L+Cii* + Con* + Gy + O(n¥)] (79)

where the constant C is undetermined locally and the constants (s and Cj are given
by

s S(B — A)C,
Cy = AGA-BHD Cs = 120GA B (80)

4.1 Gravity-Driven Rivulet
In this case A = B = (2N +1)/N and so

N 2N +1
ON+4 T ON +4°

= (81)
Note that, as in the case of weak surface tension, neither m nor n change a great deal as
N is varied. Specifically, m varies monotonically between 0 in the limit N — 0 and —1 /9
in the limit N — oo taking the value —1/13 at N = 1, while n varies monotonically
between 1/4 in the limit N — 0 and 2/9 in the limit N — oo taking the value 3/13 at

N =1. We have
_ 2N +1|c|pgsina

C9N+4 o
and the governing equation for G is

b

(82)

G" — Sn =0, (83)
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which can be solved exactly subject to (39), (40) and G(0) = G, to yield

Sn?
— _ 2 _
G=(1-17 (GO 94 ) : (84)
Thus
1 2N+41
0= NI (pgsina\¥ (2N + 1|c|pgsina) ¥ (85)
- 2N+1 Ho 9N+4 g ’
where il
+1 5772 ~
_ — 2 -
= [T a-m(a-EZ)] 7 (86)
and so . .
ll_9N+4 o po P (2N +1)Q\ ¥+ (87)
¢ "~ 2N +1pgsina \ pgsin NI )

Figure 3 shows G given by (84) for a range of values of Gy. As Fig. 3 shows, when
S =1, G is non-negative everywhere on [0, 1] only if Gy > Go. = 1/24 and always
has a single maximum at 77 = 0, whereas when S = —1, G is non-negative everywhere
on [0,1] for all Gy > 0 and has a local maximum at 7 = 0 when G, > Gy = 1/24,
and a local minimum at 7 = 0 together with two equal global maxima G = Gm(Go) at
N = £10m(Go), where

(14 24G,)? B [1 — 24G0]%
Gm = T and Mm — 9 y (88)
when Gy < G§. The local behaviour of G as n — 17 is
S 2
G = (ZGO—E> (1—n)+0(1 )2 (89)

Figure 4(a) shows I = I(Gy, N) given by (86) plotted as a function of Gy for a range
of values of N for both S =1 and S = —1, while Fig. 4(b) shows I plotted as a function
of N for a range of values of G, for both S = 1 and S = —1. As Fig. 4 shows, for
physically acceptable values of Gy the integral I is a monotonically increasing function
of Gy (but not N) satisfying

P

5N +2 6N
2G, 2N [ } WhenS:lorS:—landGo>G3,
o 21%;{- 2400
1
T~15(51) ~ MIr() whens=-1adcy=g; (90)
5N +2 N 3
4Gm”T [1 37;4G } ’ when S = —1 and Gy < G}
- 0

14



(the Appendix gives details of how these expressions are derived) so that I — oo when
G0>1andI—>0whenG0§1asN—>O,

32 ., 4S5 , 1 S
=—Gy— — Go — 1
3570 " 3150 T 593070 ~ 1207296 (1)
at N =1,
16 45 1
I 262 — 2 G+ —— 2
5% 3% T (92)
as N — oo, and
T (38EL) vy,
1~ YT UN) 7&;; )GO v (93)
L (%)
as Gy — oo. Hence
4 Gy' whenS=1lorS=-1andG > G,
jof &~ 4 e (94)
(pgsin o) G;' when S = —1and G, < Gp
(which is independent of Q) in the strongly shear-thinning limit N — 0,
1
13 3 3
= Sposies (o) (%)
pgsina \ pgsin o
where I is given by (91) at N =1,
1
9o Q\?
lef = pgsin o (ﬁ) (96)

where I is given by (92) (which is independent of 1) in the strongly shear-thickening
limit N — oo, and |¢| = O(Gy?) as Gy — oo.
Note that from (35)—(37) this solution is appropriate provided that

1
QN g2V +1 e
[(pg sin )2N+2[TN+3 < 1, (97)
1
33N . AN 27 ke
/LOQ (pg sin Q{) 9N 4
[ (ol)3N+1 ] <1, (98)
; 1
NOQN(O'l)QN'H 9N+4 o i
(pg sin a)2N+2 BTN » 99
[(Pg sin o)2N+2 < pgl cosal (99)

In the special case N = 1 we recover results equivalent to those of Duffy and Mof-
fatt [3] for a Newtonian rivulet.
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4.2 Shear-Stress-Driven Rivulet
In this case A =3 and B = 2 and so m = —1/10 and n = 1/5. We have

b= (%)% (100)

and the governing equation for G is

GG" — Sn=0. (101)
Thus
3lelIT
_ (“0) '230 , (102)
where
+1
I= / G2 dy, (103)
1
and so )
/,1,0 N 200'Q
=[(— . 1
el (T) 31T (104)

Unlike in the gravity-driven case, we cannot obtain the solution of the governing
equation for G in closed form in this case. Therefore (101) was solved numerically for
G subject to (39), (40) and G(0) = G, using pseudospectral differencing with Gauss-
Lobatto points. Because of the logarithmically singular behaviour of G” as n — 1~ (see
below) as many as 100 points were required to obtain numerical results accurate to 6
decimal places. Figure 5 shows numerically calculated solutions for G for a range of
values of G. In particular, Fig. 5 shows that the qualitative behaviour of G as Gy is
varied is the same as in the gravity-driven case, namely when S =1, G is non-negative
everywhere on [0, 1] only if Gy > Gg ~ 0.4277 and always has a single maximum at
1 =0, whereas when S = —1, G is non-negative everywhere on [0, 1] for all Gy > 0 and
has a local maximum at 7 = 0 when Gy > G ~ 0.2138 and a local minimum at n=2~0
together with two equal global maxima G = Gm(Go) at n = £y (Go) when Gy < G,
A local analysis near 7 =1 reveals that the local behaviour of Gasn=1—¢& — 1~ (i.e
€ — 07) is either

G = A + (A1 + Bilog€)§” + (A2 + By log )€ + o(€°), (105)

where the constants B;, A; and B, are given by

11

SAe(Ap + Ap) + 19

] B, = — (106)

1
= 6A3 [ 1243’

but the constants Ay > 0 and A; are undetermined locally, or if § = 1

=) () e -m () Froe o
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Note that there is no solution satisfying G’(1) = 0 analogous to (107) when S = —1.
The local behaviour of G' near n = 0 is given by (79), where from (80)

N1 (108)

022240%;’ T T 120G

Figure 6 shows I = I(Gy) given by (103) plotted as a function of Gy for both S =1
and S = —1. As Fig. 6 shows, I satisfies I ~ 0.0163 at Go = 0 when S = —1, I ~ 0.1731
at Gp = Go. when S =1, and I ~ 16G2/15 as Gy — oo. Hence

el ~ (EF) iTG? (109)
as Gy — o0.
Note that from (35)-(37) this solution is appropriate provided that
()] < ao
Q2T3 L % ilb'

|:—(—0'7—)—§ (?0) <1, (111)

1 1

oQl [\ ¥]? o b
— | = — . 112
l T (T> ] < (pglcosal) (112)

In the special case N = 1 we obtain new results for a Newtonian rivulet.

5 Imposing a Fixed-Contact-Angle Condition at the
Contact Line

Evidently the form of the present similarity solutions in which h, = b(cz)™"G'(n)
is, in general, incompatible with a fixed-contact-angle condition. Wilson, Duffy and
Davis [4] showed that the similarity solutions of Smith [1] and Duffy and Moffatt 3]
for a gravity-driven Newtonian rivulet can be modified to accommodate the non-self-
similar fixed-contact angle condition h, = —@ at n = 1, where 6 is a (small) prescribed
constant contact angle, by incorporating sufficiently strong slip at the substrate into the
model. In this section we show how the present solutions for both gravity-driven and
shear-stress-driven rivulets of a power-law fluid can be modified in a similar way.

Following the approach of Wilson, Duffy and Davis [4] we replace the no-slip and
no-penetration boundary conditions (5) at the substrate z = 0 by the slip and no-
penetration conditions

g g

U = g’uz, v = E’Uz, w=20 (113)
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at z = 0, where 8 = ((h) is the (small) slip length. With these new boundary conditions
(26) becomes

% [hA_l(h + A1) (pg cos ah — ohyy)y]y - F [hB—l(h + Azﬂ)]x =0, (114)

where in the gravity-driven case

2N +1
A=\ = 11
1= =22 (115)
and A, B and F are again given by (28), while in the shear-stress-driven case
2
/\1 - 1, )\2 = g (116)

and A, B and F are again given by (29). Various models have been proposed for 3;
here we consider the fairly general form § = e*+!/hM | where € is the small constant slip
length and the slip-law exponent M > 0. The cases M = 0 and M = 1 recover the famil-
iar models § = € and § = €*/h used, for example, by Hocking [22] and Greenspan (23],
respectively.

Slip is significant only in a small region of size O(¢) near the contact line in which
hy = O(1). In this inner region we introduce appropriately rescaled inner variables Y
and H = H(z,Y) defined by

y=(czx)" —€Y, h=c¢cH. (117)

Provided that B—A+2 > 0 (as it is for both of the problems considered here) at leading
order in €, equation (114) becomes simply -

HAYH + \H ™)Hyyy = K, (118)

where K = K (z) is an unknown function of z only. In the limit # — 0% equation (118)
becomes \; Hyyy = KHM~4+1 and so will permit a solution in the form H = Y +o(Y)
as Y — 0% only if M > A — 3, i.e. only if the slip is sufficiently strong. In the limit
H — oo equation (118) becomes Hyyy = KH~4, which has a solution of the form
H = ¢Y +0(Y) as Y — o0, where ¢ = ¢(z) is an unknown function of z only, only if
A > 2 (as it is for both of the problems considered here).

When surface-tension effects are strong the outer limit of the inner solution matches
directly with the inner limit of the outer solution provided that ¢ = —b(cz)™"G" (1).

Even when surface-tension effects are weak they are always significant in a small re-
gion of size O(6) near the contact line, where § = (¢/pgcos a)'/2 > e. In this intermedi-
ate region we introduce appropriately scaled intermediate variables Y and H = H (z, Y’)
defined by

y = (cz)" — Y, h=JmbnH. (119)
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At leading order in §, equation (114) becomes

A N 3Fnc
(Hyy — H)y +

(cx)" 'HB-A=KH 4, (120)
pg Ccos

whose solutions match with the intermediate limit of the inner solution as ¥ —s 0" and
the intermediate limit of the outer solution as Y — oo.

6 Conclusions

In this paper we obtained similarity solutions that describe the flow of a slender non-
uniform rivulet of non-Newtonian power-law fluid down an inclined plane. Rivulets
driven by either gravity or a constant shear stress at the free surface were investigated,
and in both cases solutions were obtained for both weak and strong surface-tension
effects. We found that, despite the rather different physical mechanisms driving the
flow, the solutions for gravity-driven and shear-stress-driven rivulets are qualitatively
similar. We also found that the similarity exponents m and n are relatively insensitive
to the value of the power-law index N for gravity-driven rivulets and independent of N
for shear-stress-driven rivulets.

For both driving mechanisms we found that 0 < n < 1 and m < 0 and so solutions
with ¢ > 0 represent diverging and thinning rivulets in z > 0 and solutions with ¢ < 0
represent converging and thickening rivulets in z < 0. When surface-tension effects are
weak there is a unique similarity solution in which the transverse rivulet profile has a
single global maximum at y = 0. Since ¢ and cos & must have the same sign solutions with
¢ > 0 correspond to sessile rivulets and those with ¢ < 0 correspond to pendent rivulets.
When surface-tension effects are strong there is a one-parameter family of similarity
solutions parameterised by Gy = G(0) whose behaviour is qualitatively similar for both
driving mechanisms. When ¢ > 0 the transverse rivulet profile always has a single global
maximum at y = 0. Solutions are possible only for Gy > Gy, and fail via G'(1) =0 at
Go = Goc- When ¢ < 0 solutions are possible for all values of Gy > 0 and fail via Gy = 0.
The transverse rivulet profile always satisfies G'(1) < 0 and has a global maximum at
y = O for Gy > Gj and a local minimum at = 0 together with two equal global maxima
G = G(Go) at 7 = £nm(Gy) for Gy < GE.

We also showed how the present similarity solutions can be modified to accommodate
a fixed-contact-angle condition at the contact line by incorporating sufficiently strong
slip at the solid /fluid interface into the model. Specifically, for gravity-driven rivulets the
slip-law exponent M must satisfy M > (1 — N)/N, while for shear-stress-driven rivulets
it must satisfy M > 0. The interesting question as to whether or not this procedure
selects a unique value of Gy (or perhaps a range of possible values of Gy) remains open.
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Appendix

In this appendix we analyse the asymptotic behaviour of the integral I = I(Gy, N) given
by (86) that arises in the solution for a gravity-driven rivulet with strong surface tension,

namely
2N+1

+1 ) 5772
I= G™r d?’], where G = (]. -7 ) (Go — ﬂ) s (121)
1
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in the strongly shear-thinning limit N — 0.

When § = 1 or when S = —1 and G, > Gy the function G has a single global
maximum at 7) = 0, and as N — 0 the integral in (121) is dominated by the contribution
from a narrow “spike” of height GSQNH)/ M and semi-width O(V'N) centered on 7 = 0.
Thus we define a new variable of integration ¢, by n = v/Nt, in terms of which (121)
can be written

2N+1
+-L 2 N
I=VvN /[ "™ |a-Ne G[,—SNtl dt, 122
1
-k 24
so that .
2N +o00 24 N
I~ VNG, ™ /_oo {1 - (:9;‘4T0G0) Nt%] . (123)
Since for any X )
}rig%](l + NX)¥ = exp(X) (124)
we have
1 oo S + 246G, 2] e [ 6m N ]%
~ N — [ el =2G, " |——— 12
I~ VNGy /_oo P [ ( 24G, ) ffdh=26" |5 G, (125)
as N — 0.

When S = —1 and Gy = G} = 1/24 the function G = (1 — n*)/24 again has a
single global maximum at 7 = 0, but as N — 0 the spike that dominates the integral
in (121) has semi-width O(N'/#) rather than O(v/N). Thus we define a new variable of
integration ¢, by n = N1/4¢, in terms of which (121) can be written

2N+1 _1
1 /1 N +N 1 2N 41
I= N3 (ﬁ) /_N_% (1— N5 dt,, (126)
so that
2N+1
1/ 1N\ F +oo Ayl
I~ N1 (ﬂ) / (1 — Nt3)~ dt,, (127)
and hence using (124)
2N+1 2N+1
I~ N1 (51) /;Oo exp(—tQ) dtz = 5 (ﬂ) N[ (Z) (128)

as N — 0.

When S = —1 and Gy < G the function G has two global maxima G = G, at
1M = +7m, where Gy, and 7, are given by (88), and as N — 0 the integral in (121) is
dominated by the contributions from two narrow spikes of height GCN+D/N and semi-
width O(v/N) centered on 7 = +7m. Thus we define a new variable of integration 5 by
1 = Tm + V/Nt3 in terms of which (121) can be written

2N+41

I= 2x/JV/_j_Nm [(1 — (M + VNt3)?) (Go + mﬁ;‘:—_w)] i dts,  (129)
vN
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2=

so that
2N+41 +oo 1—24
[~2VNGn® / [1 _ (—ITG") th} dts, (130)

—0o0

and hence using (124)

2N+1  p+o00 1— 24GO 2} 5N+2 [ 3IrN J %
~ ¥ _ (= =0 — m—2N_ vy
I~2VNGa® [ exp [ ( o )t3 dty = 4G [ (131)

—0o0

as N — 0.
The results (125), (128) and (131) are the ones quoted in (90).
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Figure Captions

FIGURE 1: Geométry of the problem.

FIGURE 2 : The integral I = I(N) given by (54) for a gravity-driven rivulet with weak
surface tension plotted as a function of N.

FIGURE 3 : Transverse rivulet profiles G = G(n) given by (84) for a gravity-driven
rivulet with strong surface tension plotted as a function of  when (a) S =1 for Gy =
Goc = 1/24,1/12,1/8 and 1/6, and (b) S = —1 for Gy = 0, 1/48, Gy =1/24,1/16 and
1/12.

FIGURE 4 : The integral I = I(Gy, N) given by (86) for a gravity-driven rivulet with
strong surface tension plotted as (a) a function of Gy for a range of values of N for both
S=1and S = —1, and (b) a function of N for Gy = 0.1, 0.2, ..., 1.2 for both S = 1
and S = —1. For clarity in part (b) values for S = 1 are denoted with a solid line and
those for S = —1 with a dashed line.

FIGURE 5 : Numerically calculated transverse rivulet profiles G = G(1) obtained from
(101) for a shear-stress-driven rivulet with strong surface tension plotted as a function
of n when (a) § = 1 for Go = Gy ~ 0.4277, 0.8, 1.2 and 1.6, and (b) S = —1 for G, = 0,
Gy ~ 0.2138, 0.4, 0.8, 1.2 and 1.6.

FIGURE 6 : The integral I = I(G)) given by (103) for a shear-stress-driven rivulet with
strong surface tension plotted as a function of Gy for both S =1 and S = —1.
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