Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

On the gravity-driven draining of a rivulet of fluid with temperature-dependent viscosity down a uniformly heated or cooled substrate

Wilson, S.K. and Duffy, B.R. (2002) On the gravity-driven draining of a rivulet of fluid with temperature-dependent viscosity down a uniformly heated or cooled substrate. Journal of Engineering Mathematics, 42 (3-4). pp. 359-372. ISSN 0022-0833

[img] PDF
varivisc1.pdf
Preprint

Download (152kB)

Abstract

We use the lubrication approximation to investigate the unsteady gravity-driven draining of a thin rivulet of Newtonian fluid with temperature-dependent viscosity down a substrate that is either uniformly hotter or uniformly colder than the surrounding atmosphere. First we derive the general nonlinear evolution equation for a thin film of fluid with an arbitrary dependence of viscosity on temperature. Then we show that at leading order in the limit of small Biot number the rivulet is isothermal, as expected, but that at leading order in the limit of large Biot number (in which the rivulet is not isothermal) the governing equation can, rather unexpectedly, always be reduced to that in the isothermal case with a suitable rescaling. These results are then used to give a complete description of steady flow of a slender rivulet in the limit of large Biot number in two situations in which the corresponding isothermal problem has previously been solved analytically, namely non-uniform flow down an inclined plane, and locally unidirectional flow down a slowly varying substrate. In particular, we find that if a suitably defined integral measure of the fluidity of the film is a decreasing function of the temperature of the atmosphere (as it is for all three specific viscosity models we consider) then decreasing the temperature of the atmosphere always has the effect of making the rivulet wider and deeper.