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Abstract

We demonstrate here, for the first time, the constitutive scaling approach ap-

plied to simulate a fully compressible, non-isothermal micro gas flow within a main-

stream computational physics framework. First, the physics underlying these new

constitutive-relation scaling models for rarefied gas flows at the microscale, in par-

ticular, the Knudsen layer, is discussed. Results for Couette-type flows in micro-

channels, including heat transfer effects due to rarefaction, are then reported and

we show comparisons with both traditional Navier-Stokes-Fourier solutions and in-

dependent numerical studies. We discuss the limitations of the constitutive scaling

process, such as the breakdown of the model as the Knudsen number increases and

the influence of the wall interaction model on the numerical results. Advantages

of the constitutive scaling technique are described, with particular reference to the

practicality of using it for microscale engineering design.
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1 Introduction

At the macroscale, engineers routinely use computational fluid dynamics (CFD)

methods to design fluid flow and heat transfer systems. However, at the mi-

croscale, where rarefaction becomes significant, gas flows are often highly non-

equilibrium in nature and are no longer adequately represented by the Navier-

Stokes-Fourier (N-S-F) equations of continuum fluid dynamics. New and in-

novative numerical models must therefore be developed in order to capture

the complex rarefaction behaviour observed at very small physical scales.

In this paper we demonstrate, for the first time, the use of constitutive scaling

for fully-compressible, non-isothermal flows in CFD. Constitutive scaling is

a phenomenological method, in which the constitutive relations traditionally

used with the N-S-F equations are replaced by modified functions, curve-fitted

from fundamental kinetic theory and direct simulation Monte-Carlo (DSMC)

results. Scaling the constitutive relations allows us to represent the gross non-

linear behaviour of gas flows near solid interfaces, known as Knudsen layers,

where intermolecular collisions do not equilibrate energy and momentum be-

tween a gas and its bounding surfaces.

We implement constitutive scaling for both the momentum and energy equa-

tions within a conventional CFD application, with a range of boundary condi-

tions appropriate to rarefied flows. Then we discuss the practical implications

of using this type of analysis for Couette-type flows in micro-channel geome-

tries, and investigate a range of shear-driven gas flows between parallel plates

with coupled heat transfer effects. Our results are shown, and validated against

kinetic theory and DSMC as appropriate, and we discuss the relative merits of

the constitutive scaling functions we have implemented. Aspects of the simu-

lation are discussed, such as its numerical implementation, wall-normal shear

stress variation, predicted Knudsen layer structure, and other features of the

analysis specific to modelling the combined transfer of energy and momentum

in small-scale gas flows. We then draw conclusions as to the practicality of

using the constitutive scaling approach for engineering design, and we outline

avenues of future research to extend the applicability of the technique.
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2 Physics of Rarefied Flows

At the macroscale the N-S-F equations can predict gas flow and heat trans-

fer properties in a wide variety of situations. These continuum-type equations

are only suitable, however, for small departures from the equilibrium state.

In microscale applications, large departures from local thermodynamic equi-

librium are common, as gas flows in small-scale systems may be rarefied even

at atmospheric operating pressures. Rarefaction in small-scale systems is at-

tributable to the magnitude of the molecular mean free path of the gas flow

relative to the physical system scale. Typically, rarefaction is characterised by

the Knudsen number, which is the dimensionless ratio of the molecular mean

free path of the gas, λ, to a characteristic system dimension, H :

Kn =
λ

H
, (1)

where the equilibrium molecular mean free path of the gas is defined here for

hard-sphere molecules as

λ =
µ

ρ

√

π

2RT
. (2)

For Kn values less than 0.001, the N-S-F equations remain valid. In the range

0.001 < Kn < 0.1, boundary conditions that account for discontinuities of mo-

mentum and energy between solid surfaces and the gas flow (non-equilibrium

flow features known as “slip” and “jump”, respectively) may be used with the

N-S-F equations. Using this approach, it is possible to model weakly-rarefied

flows, although accuracy is limited by the N-S-F equations’ inherent inability

to predict the nonlinear structure of the Knudsen layer (see below).

Throughout this paper Maxwell’s velocity slip boundary condition will be

used, including the effects of thermal creep [1]:

−→u slip −−→u wall = ζslip

(

2 − σU

σU

)

λ

µ
−→τ +

3

4

Pr (γ − 1)

γP
−→q , (3)

where the tangential shear stress is −→τ =
(−→

i n · Π
)

·
(

1 −−→
i n

−→
i n

)

and heat

flux is −→q =
−→
Q ·

(

1 −−→
i n

−→
i n

)

, with an arrow denoting a vector quantity. The

slip coefficient ζslip, equal to 1 in Maxwell’s original derivation, is taken to

be ≈ 0.8 when constitutive-relation scaling methods are used (as described

below) because this value better approximates the true slip magnitude for

gas flow over planar surfaces [2]. For temperature jump at solid boundaries,
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Smoluchowski’s description is used [3]:

Tjump − Twall = ζjump

(

2 − σT

σT

)

(

2γ

γ + 1

)

λ

Pr

∂T

∂n
. (4)

The temperature jump coefficient, ζjump, is also taken to be ≈ 0.8 when con-

stitutive scaling is used and, again, this value is derived from linearised kinetic

theory for gas flow over planar surfaces [4].

Both Maxwell’s and Smoluchowski’s equations contain phenomenological ac-

commodation coefficients. In the velocity slip case, the tangential momentum

accommodation coefficient σU determines the proportion of molecules reflected

specularly (equal to 1 − σU ) or diffusely (simply σU ). The energy accommo-

dation coefficient σT has a similar effect, prescribing the degree of energy

exchange with the wall. Specular reflection implies that the tangential molec-

ular momentum is unchanged, and that the gas therefore exerts no tangential

stress on the wall. It is also assumed that no energy exchange takes place be-

tween the wall and the molecule. In the case of diffuse reflection, molecules are

ascribed random velocities with the loss of all of their tangential momentum

on average, and recede at the temperature of the wall.

At Knudsen numbers greater than 0.1, gas flows are said to be transitional;

increasingly fewer intermolecular collisions take place in a given time period,

until the flow becomes free-molecular in nature beyond Kn ≈ 10 [5]. Close to

solid surfaces, rarefaction effects are compounded by the relatively large dif-

ferences in momentum and energy between wall molecules and gas molecules.

Although there will be a layer of gas where perfect equilibrium is not attained

within one or two mean free paths of a wall in any gas based system, it is the

increased relative size of the mean free path in rarefied flows that is impor-

tant. In this near-wall region, known as the Knudsen layer, strong departures

from the linear stress/strain-rate (or heat-flux/temperature-gradient) profile

predicted by the N-S-F equations are observed.

In very small geometries, where Kn is large, it is possible for the entire flowfield

to exhibit nonlinear behaviour, as the Knudsen layers extending from each

wall begin to overlap. This can drastically impact macroscopic quantities of

engineering interest, such as mass flowrate and drag force. As this occurs,

the linear constitutive relationships for shear stress and heat flux used in the

N-S-F equations become increasingly unsuitable.
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3 Constitutive-Relation Scaling

Relatively-high Knudsen number flows may be simulated using continuum

fluid dynamics approaches, provided suitable modifications are made to incor-

porate at least some of the nonlinear Knudsen layer effects.

One approach is to use a boundary condition that is second-order in Kn. For

planar flows, this condition has the form:

uslip = ±F1λ
dU

dn
− F2λ

2d2U

dn2
. (5)

This technique has been used with some success by several authors (see, e.g.,

[6]) to predict certain bulk properties, such as mass flow rates. Its main ad-

vantage is that it is simple to implement but, as discussed in [7], there is no

consensus on the two coefficients F1 and F2, which makes it difficult to create

a general model. A more promising approach was proposed in [8], where a

second-order set of boundary conditions was derived from the Burnett equa-

tions (which are constitutive relations second-order in Kn). However, most

of these second-order methods fail to capture the nonlinear features found in

Knudsen layers and, moreover, tend to overpredict the slip velocity at the wall.

Instead, the technique we investigate in this paper is the method of constitutive-

relation scaling developed by Lockerby et al. [2]. This technique uses linearised

kinetic theory results to determine a phenomenological function f(n/λ) with

which to scale the constitutive relationship for shear stress in planar flows, i.e.

τ = µ
dU

dn
=⇒ τ =

1

f(n/λ)
µ

dU

dn
. (6)

The scaling is dependent on normal distance to the nearest solid surface, n,

and the local mean free path, λ:

f(n/λ) ≈ 1 +
7

10

(

1 +
n

λ

)

−3

. (7)

While this specific f (n/λ) is derived from kinetic theory, it is equally possible

to use DSMC, molecular dynamics (MD) or experimental data to determine

other case-specific scaling functions, allowing the constitutive scaling method

to be extended, in principle, to flows of e.g. polyatomic gases.

This particular constitutive scaling model is derived from a solution for a rela-

tively low speed, planar flow of monatomic gas subject to uniform shear stress.
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While its applicability should therefore be limited to cases of this general type,

it has been shown to provide reasonably accurate results for some cases that

are technically beyond the scope of its derivation [9].

However, the primary advantage of constitutive scaling is that it is an effi-

cient method for incorporating some important rarefaction effects within a

continuum framework. It is much less computationally expensive than DSMC

or MD, and the method is integrable into conventional engineering tools such

as CFD. This means it has significant potential advantages for the practical

design of gas-based microsystems.

Several different scaling functions for rarefied micro-flows have been proposed

recently: Kn-dependent functions [10], and power-law scaling [11], amongst

others [12]. In this paper, however, we discuss the models proposed by Lockerby

et al. [2] and Reese et al. [4]. These will be referred to as Model A and Model

B, respectively. The main difference between these two models is the relation-

ship between the constitutive scaling functions for shear stress and for heat

flux.

Model A [2]: The function in Eq. (7) is taken alongside the dynamic vis-

cosity to form an effective viscosity term that varies with normal distance to

the nearest solid surface, i.e.

µeffA
=

µ

f (n/λ)
, (8)

where the subscript A refers to a quantity used in Model A. Then, using

the definition of Prandtl number, which describes the relationship between

momentum diffusivity and energy diffusivity, i.e.

Pr =
µcp

κ
, (9)

an expression for scaling the thermal conductivity, κ, can be found: given the

hard-sphere, monatomic gas model condition of Pr = 2/3, then

κeffA
=

µeffA
cp

Pr
=

3

2
µeffA

cp. (10)

So, in Model A the relative magnitudes of the momentum and energy diffusivi-

ties are preserved from the original molecular model. This scaling function has

been successfully applied to several standard benchmark micro-flows, includ-
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ing Couette flow, Poiseuille flow, flow over an unconfined sphere [2], in addition

to cylindrical Couette flow [9] and flow in constricted microchannels [13].

Model B [4]: Constitutive scaling functions for Knudsen layers of both mo-

mentum and energy were recently proposed in [4], using kinetic theory data

from a wide literature survey to determine effective values of both dynamic vis-

cosity and thermal conductivity. The expressions for these effective quantities

are of a similar general form, with the original constitutive constants scaled

by normal distance to the nearest wall and the appropriate accommodation

coefficient for tangential momentum or energy.

From [14], the replacement constitutive relationship for momentum (i.e. effec-

tive viscosity) is:

µeffB
(n) =

µ

1 − AKP (DKP · σU + EKP )
(

1 +
√

π

2
n
λ

)AKP−1
, (11)

and the scaling function for energy (i.e. effective thermal conductivity) is:

κeffB
(n) =

κ

1 − ATJ (DTJ · σT + ETJ)
(

1 +
√

π

2
n
λ

)ATJ−1
. (12)

The subscripts KP and TJ refer to Kramers’ problem and the temperature

jump problem, which were the kinetic-theoretical case studies used in the

curve-fitting to derive the scaling functions; A, D and E are constants gener-

ated in the curve-fitting process, listed in Table 1 for the hard-sphere molecular

model. Note that in this model the diffusivities of momentum and energy are

not both scaled in the same way.

µ-scaling AKP DKP EKP σU

Coeff. value -2.719 -0.293 0.531 1.0

κ-scaling ATJ DTJ ETJ σT

Coeff. value -2.142 -0.745 1.295 1.0

Table 1

Coefficients used in Eqs. 11 and 12 to define the scaling functions of Model B.

The scaled diffusive quantities in Model A and Model B are purely effective val-

ues, and are not intended to be used to define physical values of, for example,
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mean free path or Prandtl number. Rather, the original viscosity and ther-

mal conductivity should be used to define physical quantities. Within a CFD

framework, however, it is important that physical quantities are retrievable

from the scaled model. For example, in the hard-sphere model approximation

of monatomic gases, flows incorporating both momentum and energy fluxes

may be shown to have a constant Prandtl number, Pr = 2/3 [15]. If this value

is not recovered using the “true” velocity or temperature profiles produced by

the scaling approach, it is possible that this is due to a physical inconsistency

in the scaling model.

Comparing Models A and B: Figures 1 and 2 illustrate the variation of

effective dynamic viscosity µeff and effective thermal conductivity κeff, com-

pared to nominal constant values of µ and κ, respectively. Model A scales

consistently for both dynamic viscosity and thermal conductivity, producing

effective quantities 0.59 times their original value at the wall, and reaching

the full value of the original quantity outside the Knudsen layer region. Model

B is seen to apply different scaling to each quantity, resulting in wall values

of µeff = 0.62µ and κeff = 0.47κ, and again reaching the full original value

outwith the near-wall region of the flow.
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Fig. 1. Effective viscosities provided by the scaling models, compared to (constant)

nominal viscosity.

Figure 3 shows the ratio of effective viscosity to effective thermal conductivity

predicted by each scaling model, which is directly comparable to the effective
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Fig. 2. Effective thermal conductivities provided by the scaling models, compared

to (constant) nominal thermal conductivity.

Prandtl number (i.e. Pr from Eq. 9, but using effective quantities and without

the specific heat at constant pressure cp as a coefficient). In the hard-sphere

molecular model, only translatory exchanges of energy are present, leading to a

fixed ratio of momentum to thermal energy exchange for a fixed collision time,

which in turn leads to the constant Prandtl number condition. What the figure

illustrates is that using Model B effectively induces a difference between the

magnitude of momentum exchange and energy exchange in any given collision.

This violates the constant Prandtl number condition of the hard-sphere gas

model — which was the model from which the function in Eq. (12) was derived.

As such, we conclude that the use of Model B may be inappropriate in cases

where both momentum and energy exchange are considered. In isothermal

or isoflux cases, however, Model B could still represent a legitimate form of

constitutive scaling.

4 Half-Space Problems

In rarefied flows, velocity slip and temperature jump arise within the Knudsen

layer as the difference in the average molecular properties of the wall and those

of the gas at the wall. The Knudsen layer thickness is the average distance over

which these discontinuities would be equilibrated in a quiescent gas (or in an

unheated gas for the thermal case). The Knudsen layer regions are illustrated
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mentum to energy diffusivity) provided by the scaling models.

schematically in Figs. 4 and 5 as extending ≈ 2λ from the planar surface.
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Fig. 4. Schematic of Kramers’ problem flow configuration showing constant applied

shear stress, τ ; traditional, no-slip N-S solution (dotted line), N-S solution with

fictitious slip boundary condition (dashed line) and true velocity profile (solid line).
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Fig. 5. Schematic of the temperature jump problem showing constant applied heat

flux, q; traditional, no-jump N-S-F solution (dotted line), N-S-F solution with fic-

titious jump boundary condition (dashed line) and true temperature profile (solid

line).

4.1 Kramers’ problem

Kramers’ problem (Fig. 4) is the incompressible, isothermal flow of a gas in

a half-space under a constant shear stress that is applied tangentially to a

stationary planar wall. The shear stress generates a linear strain-rate profile

normal to the wall, except in the near-wall Knudsen layer region where an

increase in strain-rate is observed. This momentum Knudsen layer arises due

to incomplete accommodation of momentum with the surface.

Although relatively few experimental results are available for constant-shear

problems, there are many reliable kinetic theory solutions in the published

literature. Typically, these solutions report a velocity defect, rather than a

velocity profile, varying with normal distance to the stationary wall. Velocity

defect is taken to be the difference between a standard Navier-Stokes solution

to the problem, with a “fictitious” slip coefficient applied, typically ζslip =

1.146, and the true velocity profile in the Knudsen layer [16].

In the derivation of Model B, the concept of velocity defect was used to define a

dimensionless function S(n/λ) describing the spatial structure of the Knudsen

layer [14]. This is effectively a shape defect term, describing Knudsen layer
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changes in the near-wall profiles of given macroscopic quantities of interest,

such as velocity or temperature. The profile defects are curve-fit from a wide

range of data to establish the coefficients given in Table 1. By re-casting

Eq. (7) in the form of Eqs. (11) and (12), it is possible to express Model A

in the form of Model B, using coefficient values of A = −2, D = 0 (i.e. the

Model A function is not accommodation-coefficient dependent) and E = 0.35.

Combining Eqs. (9) and (11) in ref. [4], we then establish

S(n/λ) = (Dσ + E)

(

1 +

√
π

2

n

λ

)A

, (13)

where σ is the surface accommodation coefficient of either tangential mo-

mentum or energy, and the
√

π/2 term is introduced to convert between those

authors’ definition of mean free path and our present definition, Eq. (2). Using

the dimensionless shape defect, S(n/λ), we are able to compare both consti-

tutive scaling models directly to the kinetic theory data presented in [16], as

shown in Fig. 6.

It is obvious from Fig. 6 that the Knudsen layer predicted by Model B is

much closer to the kinetic theory data than the structure predicted by Model

A. This would imply that, at least in this particular case, Model B would be

expected to give more accurate results when applied as a scaling relationship

to the Navier-Stokes equations. It is noteworthy, however, that very close to

the wall even the curve-fit of Model B fails to capture accurately the gradient

of the shape defect, which determines, in practice, the shape of the Knudsen

layer.

4.2 The temperature jump problem

The temperature jump problem (Fig. 5) is a constant heat flux in a half-space,

applied normally to a planar wall in a quiescent gas. In the thermal Knudsen

layer near the solid surface the temperature gradient increases, reflecting the

incomplete exchange of thermal energy between the gas and the wall.

The thermal Knudsen layer structures predicted by the constitutive scaling

models for the temperature jump problem are shown in Fig. 7, in comparison

to kinetic theory data from [17] 1 . Again, the shape defect predicted by Model

1 Very few data points are given in Loyalka’s paper. However, the authors are

satisfied that it remains one of the most reliable available sources of data for the
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Fig. 6. Knudsen layer shape defect predicted for Kramers’ problem: kinetic theory

data [16] (points connected by solid line) compared to Model A (dashed line) and

Model B (dotted line).

B would seem to provide a much better representation of the thermal Knudsen

layer, as observed through the temperature profile. Model A provides a realistic

estimate of the shape defect gradient, i.e. the form of the thermal Knudsen

layer, but under-predicts the extent of the Knudsen layer (the magnitude of

the shape defect).

Considered together, Figs. 6 and 7 illustrate that kinetic models, which only

consider transfer of momentum or energy, not both, appear to predict different

Knudsen layer structures [16,17]. This difference is the source of the variation

in Prandtl number that occurs in Model B. To maintain the monatomic, hard-

sphere constant Prandtl number of 2/3, a single Knudsen layer structure,

applicable to both momentum and energy transfer, is required — such as that

shown by Model A. The Model A trace in Figs. 6 and 7 is roughly equidistant

between the Kramers’ problem and temperature jump problem profiles, with a

gradient that reasonably represents both kinetic theory solutions. It is perhaps

for this reason that Model A appears to produce reasonable results across a

range of flow configurations [2,9,13], although its original derivation was from

an isothermal Kramers’ problem case [18].

temperature jump problem.
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5 Constitutive Scaling in CFD

In order to create a flexible tool suitable for real-world engineering of gas-

based microsystems, we have implemented the constitutive scaling method

in the open-source CFD package, OpenFOAM [19]. OpenFOAM is a finite-

volume numerics package designed to solve systems of differential equations

in arbitrary 3D geometries, using a series of discrete C++ modules. These

modules interact to create a series of solvers, utilities and libraries that allow

continuum mechanics problems to be pre-processed, solved, and the results

post-processed. The advantages of using OpenFOAM as a CFD framework

in which to implement constitutive scaling — something that has not been

done before for compressible flows — are that the software is both flexible

and highly extensible. Its hierarchical, open structure allows the user to make

transparent modifications to the governing equations they wish to solve, to

tailor them to specific applications whilst retaining the benefits of a stable

and general numerical framework.

The particular compressible-flow solver we use in OpenFOAM, developed orig-

inally for macroscale rarefied flows, is formulated in terms of density, momen-

tum and total energy. The governing equations are solved in a segregated

manner, followed by a PISO-style pressure correction loop. A range of nu-
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merical discretisation schemes is employed, with a linear interpolation scheme

used throughout to determine face-centre values from cell-centre values.

The scaling of constitutive relationships can be achieved in a CFD code

through introducing an effective viscosity and thermal conductivity. We find

it convenient to first re-cast the expression for effective viscosity into an ex-

pression for effective mean free path based on normal distance to the nearest

wall, i.e.

λeff =
λoriginal

f (n/λoriginal)
. (14)

The definition of molecular mean free path, Eq. (2), is then used to define an

effective dynamic viscosity:

µeff =
λeffρ
√

π
2RT

. (15)

One motivation to do this is that we postulate that in real systems, some

changes to the mean free path of the gas would occur in the Knudsen layer

region, due both to solid-gas collisions and to the interaction between gas

molecules incident to the surface and those reflected from it [20].

However, the primary motivation for the use of an effective mean free path in

constitutive scaling models is that the strain-rate in Maxwell’s slip Eq. (3),
−→τ /µ, increases with effective viscosity. However, by including the effective

viscosity as a function of mean free path, which is, in turn, a function of wall-

normal distance, the true strain-rate at the wall can be used to determine

the slip velocity. In constant-shear-stress problems, such as Couette flow, we

thereby maintain the correct shear-stress despite the variation in strain-rate

observed through the Knudsen layer. This cannot be said of other constitutive

scaling implementations, which rely on separate calculation of the viscous

stress arising from an equivalent equilibrium strain-rate profile.

6 Compressible Micro-Couette Flow

To demonstrate the use of constitutive scaling in a typical engineering appli-

cation, we simulate high-speed Couette flow of argon gas in a 2D channel. This

is the first application of a constitutive scaling method to fully compressible

microflows in CFD. While the system set-up, described below, is isothermal,

rarefaction effects generate a temperature profile in the flow; so the flow itself

is non-isothermal [21].
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The problem we have chosen here is essentially a 1D flow, but we solve it as

a 2D planar flow, and our models and solvers have been implemented fully in

3D in OpenFOAM, to enable other more general problems to be investigated

in the future.

The 2D channel configuration is shown in Fig. 8. The upper wall remains

stationary and the lower wall moves in the positive x-direction at Mach 1 (with

the local speed of sound calculated using the wall temperature), generating a

constant tangential shear stress. The channel length is a minimum of 60µm,

and in any case sufficiently long as to allow end effects to become negligible

in the developed flow in the centre of the system. Its height in the y-direction

is varied in order to determine the Knudsen number of the case. The different

channel heights used are given in Table 2, with corresponding Kn values.

For validation purposes, we compare our CFD results up to Kn = 0.5 — a

relatively large value for constitutive scaling [4] — to DSMC data available

in [22].
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Bottom wall: U = UMa=1, T = 300K

p p

Top wall: U = 0, T = 300K

Fig. 8. Couette flow configuration and nomenclature for our compressible CFD

analysis; UMa=1 is the velocity applied to move the lower wall at the local speed of

sound.

Kn 0.01 0.1 0.2 0.5 0.8

H (×10−6m) 7.09 0.709 0.3545 0.1418 0.0886

Table 2

Table of channel heights used to vary Kn in our simulations.

Argon gas at a temperature of 300K is used as the working fluid, with both

wall temperatures fixed at 300K. The use of argon makes ref. [22] a particularly
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appropriate source of validation data: it is a monatomic gas, which is in keeping

with the assumptions of molecular behaviour inherent in the velocity slip and

temperature jump conditions [23], and in the derivation of the constitutive

scaling relationships from hard-sphere molecular force interaction models [2,4].

At the channel ends, a fixed-value boundary condition on pressure is used,

p = 101.325kPa, and the temperature and velocity gradients normal to the

(parallel) inlet and outlet faces are set to zero. Velocity slip and tempera-

ture jump boundary conditions (Eqs. 3 and 4) are used at the channel walls;

tangential accommodation coefficients of momentum and energy are fixed at

σU = σT = 1, with the slip/jump coefficients ζslip = ζjump = 0.8. Structured

hexahedral meshes, tested to ensure grid-independent results, are used in all

cases. The cell density increases towards the channel walls, in order to capture

the Knudsen layer structure accurately.

In combining the transport of both energy and momentum, this shear-driven

case exposes weaknesses in Model B:

• The relative diffusivities of energy and momentum for the monatomic hard-

sphere model must be fixed by the condition Pr = 2/3 — Model B violates

this condition and is therefore, strictly, inappropriate for application to this

case;

• For this case, the velocity profiles produced by Model B are near-identical

to those of Model A, as illustrated in Fig. 9, while temperature results from

Model B are somewhat less accurate than those from Model A (in compar-

ison to DSMC), as illustrated in Fig. 10. While it is important to note that

both models capture the same type of temperature profile as predicted by

DSMC, with a similar magnitude of the peak (channel-centre) temperature,

there are differences between the model results and the DSMC data. These

may be attributed to: a) the fact that both models are derived from linear

problems, so may not be applicable to Couette flow where the temperature

profile is parabolic, and b) that DSMC is able to capture other rarefaction

effects, such as tangential heat fluxes, which the present models cannot.

(The latter fact may be expected to result in more pronounced divergences

between these models and DSMC in simulations of more complicated flow

systems.)

Considering these factors, and the limited applicability of Model B in terms of

recovering a constant Prandtl number physically, the results we report below

are taken from Model A simulations only.
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Fig. 9. Micro-Couette velocity profiles predicted by Model A, Model B and

DSMC [22] for Kn = 0.1.
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Fig. 10. Micro-Couette temperature profiles predicted by Model A, Model B and

DSMC [22] for Kn = 0.1.

Figure 11 shows the velocity cross-channel profiles predicted using the CFD

implementation of Model A for a range of Kn values (shown as lines), com-

pared to the corresponding DSMC data (shown as points) from [22]. Velocity

is non-dimensionalised by the velocity of the moving lower wall; the spatial

position in the y-direction is non-dimensionalised by the appropriate channel
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height. As the figure illustrates, the Knudsen layer structure is represented

relatively well by the CFD, although as Kn increases the deviation from the

DSMC data does become more appreciable.

Figure 12 shows temperature profiles in the lower half of the channel for the

compressible Couette flow case. Results obtained using Model A are compared

to results from the standard form of the N-S-F equations. First, the no-slip, no-

jump boundary conditions common to macroscale CFD are used; then, these

are replaced with slip and jump boundary conditions from Eqs. (3) and (4).

Temperature is non-dimensionalised by the fixed wall temperature. Results

are shown for two key Kn values, 0.01 and 0.1, which are close to the lower

and upper limits, respectively, of the slip-flow regime [5]. The no-slip/no-jump

model is shown as a single solid line, which is the same for both of these Kn

values, given that the N-S-F equations fail to predict altered flow profiles with

increasing Kn.

The introduction of slip and jump boundary conditions improves the per-

formance of the N-S-F model, but nonlinear Knudsen layer effects remain

beyond its scope. As shown in Fig. 12, at the lower limit of the slip regime,

the difference between the N-S-F with slip/jump boundary conditions and the

constitutive-scaling model is small, and only practically observed as a very

slightly increased temperature gradient close to the wall. At this Kn, the

scaled equations and the N-S-F equations return near-identical temperature

jump values at the wall. As Kn increases to 0.1, the difference between the

standard N-S-F model and Model A becomes marked, with Model A predicting

lower temperatures across much of the flow, and a noticeably smaller temper-

ature jump at the wall. The temperature gradient is also seen to increase near

the wall, reflecting the presence of a thermal Knudsen layer — an effect not

captured by the unscaled N-S-F equations, regardless of the boundary condi-

tions applied. This illustrates that even for flows with Kn values traditionally

considered to be part of the slip regime, the structure of the Knudsen layer can

significantly impact macroscopic quantities of interest. When Kn approaches

the upper limit of the slip regime and tends towards the lower limit of the tran-

sition regime, it is important that numerical models should capture Knudsen

layer behaviour.
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7 Discussion

One of the primary advantages of constitutive-relation scaling is that it is quite

simple to implement but is able to capture some of the trends associated with

the complex non-equilibrium physics of the Knudsen layer. When applied to
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lower Kn transitional flows, constitutive scaling can offer greatly improved ac-

curacy over simple N-S-F solutions in the prediction of macroscopic quantities

of interest, such as mass flowrate [24].

In this paper we have successfully implemented a constitutive scaling approach

in conventional CFD. This brings a great deal of flexibility to the method, mov-

ing it away from its original “single-user, single-case” scientific basis, towards

suitability for use as a design tool for real engineering problems. The successful

analysis we have demonstrated of a fully-compressible, non-isothermal case,

represents a significant step forward in this respect.

The method could be advanced with the derivation of new scaling models,

in place of the models A and B we have investigated. Both of these mod-

els are phenomenological in nature, as they are curve-fit from pre-existing

(and case-specific) Knudsen layer solutions using other independent methods.

They are also derived from kinetic solutions that use only the hard-sphere

molecular model. A physical analysis of near-wall intermolecular interactions,

and deriving scaling functions from more complex force-interaction laws (e.g.

soft-spheres), would provide a more general model.

Certain physical flow features, such as wall-normal shear stresses or tangen-

tial heat fluxes, and the Knudsen minimum, seem to be beyond the scope of

existing constitutive scaling within an N-S-F framework. While replacing the

scaled N-S-F equations with a higher-order continuum model is desirable, no

single higher-order equation set has, as yet, demonstrated universal superi-

ority [24]. Higher-order models also require additional boundary conditions,

which can be difficult to obtain or prescribe.

While isothermal flow over spheres, Couette flow between rotating cylinders

and flow through channels with venturi-type constrictions have all been suc-

cessfully analysed previously using Model A [2,9,13], it is important to explore

the applicability of the model. For example, Fig. 13 shows the temperature

profile predicted by Model A for the micro-Couette flow case, with results

for the high Kn value of 0.8 included. The CFD initially shows higher max-

imum temperatures and a more linear profile as Kn increases, comparable

to the data available in [22,25]. But lower maximum temperatures start to

appear as Kn → 0.5, or even somewhat lower, as the Knudsen layers from

opposite sides of the channel begin to interact with each other, and boundary

slip/jump effects increase. Our scaling method effectively prescribes a veloc-

ity/temperature gradient dependent only on normal distance from a surface,
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and may not properly account for this physical coupling between Knudsen lay-

ers. It also makes use of Maxwell’s and Smoluchowski’s phenomenologically-

derived boundary conditions for gas-solid interactions and, as Kn increases,

slip/jump effects become dominant, magnifying errors arising at the system

boundaries [18].
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Fig. 13. Temperature profiles predicted by Model A, with high-Kn results.

The temperature profiles produced are, of course, accommodation-coefficient

dependent. In order to isolate the slip/jump effects, the compressible micro-

Couette flow case detailed above was reassessed using both Model A and the

unscaled N-S-F equations, with different combinations of tangential accommo-

dation coefficients for energy and momentum. Two different values of accom-

modation coefficient were used, first σ = 1 for comparison to Xue’s DSMC [22],

then σ = 0.8, a value typical of argon flows in silicon channels [26]. For both

simulation types, four combinations of σU and σT were used: σU = σT = 1;

σU = 0.8 and σT = 1; σU = 1 and σT = 0.8; and finally σU = σT = 0.8. In

the Model A cases, the true microslip coefficients of ζslip = ζjump = 0.8 were

used, and in the N-S-F analyses, the standard values of ζslip = ζjump = 1 were

applied.

Figure 14 shows results from Model A at Kn values of 0.2, 0.5 and 0.8 when

σU = σT = 0.8, comparable to the high-Kn results shown in Fig. 13 where

σU = σT = 1. The decrease in the accommodation coefficients is seen to

increase the temperature jump at the wall, and the crossover of the maximum

temperature predictions has occurred at a much lower Kn. Therefore, even for
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relatively small changes in the tangential accommodation coefficients, large

variations in the results of numerical analyses can be observed. As several

recent studies have shown low accommodation coefficients to be practically

realisable — e.g. σU values as low as 0.52, arguably, for carbon nanotubes [27]

— different accommodation coefficients, and the accuracy with which they are

determined in experimental cases, are likely to have an important effect on

many types of continuum models for rarefied gas flow.
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Also of interest is the interaction between the two types of accommodation

coefficient. In N-S-F analyses at high Kn it was found that when energy and

momentum accommodation coefficients were equal, at either 0.8 or 1, the

predicted temperature jump at the channel walls was relatively similar, as is

the predicted maximum temperature at the channel centre. However, if one

accommodation coefficient is set to 0.8 and the other to 1, the behaviour of

the simulation can be significantly altered.

To illustrate, Fig. 15 shows how the maximum predicted temperature (the

temperature at the channel centre) varies with Kn. Each accommodation co-

efficient combination displays a definite peak in the predicted temperature,

occurring in the range of Kn values between about 0.15 and 0.45. The largest

maximum temperatures are predicted when the energy accommodation co-

efficient is at its lowest value of σT = 0.8, with momentum accommodation

coefficient σU = 1. Conversely, when the momentum accommodation coeffi-

23



cient is σU = 0.8, and the energy accommodation remains at σT = 1, the

maximum predicted temperature is at its lowest.

As shown in Fig. 15, these highest and lowest maximum temperature pro-

files are equidistant from the “reference” state where σU = σT = 1. This

implies that energy and momentum are assumed to be exchanged at the same

rate when Maxwell’s and Smoluchowski’s boundary conditions are used simul-

taneously, which is unlikely to be true of any physical system. For example,

returning to our earlier discussion of Prandtl number, we know the momentum

diffusivity to be only a proportion of the energy diffusivity, and momentum is

exchanged at a faster rate than energy [18]. Accommodation coefficients are

not physical properties of a surface, but rather they arise from the interaction

between gas and wall molecules, and little is really known about the com-

plex physics of gas flow in near-surface regions. It is therefore likely that more

physically-based boundary conditions, such as Langmuir’s slip model, based on

surface chemistry, would be better suited to many practical micro-engineering

flow simulations [28].
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8 Conclusions

In this paper, some of the key physics of rarefied gas flows has been outlined,

including the discontinuities of energy and momentum at fluid-solid bound-

aries, and the behaviour of gas flow in near-wall Knudsen layer regions. The

constitutive scaling approach to modelling the Knudsen layer within a con-

ventional continuum fluid dynamics framework has also been described. The

relative merits of two available constitutive scaling models have been com-

pared, and the models tested using engineering cases.

We have demonstrated here, for the first time, the integration of a constitutive

scaling approach into conventional CFD for fully-compressible, non-isothermal

flows, and have compared our technique with independent DSMC results. We

have also discussed the practical implications of using this type of simulation

approach for microscale gas flows, and have outlined some of its advantages

and disadvantages when compared with alternative methods.

Future work will include further investigation of constitutive scaling models,

and the development of new, more generally-applicable functions based on

analysis of molecular dynamics results for Knudsen layers. We also intend to

assess the range of physically-based boundary conditions, and to make use of

our current compressible flow CFD implementation as an engineering tool for

investigating a number of technological microflow configurations.
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Nomenclature

A Scaling coefficient

cp Specific heat at constant pressure (kJ/kgK)

D Scaling coefficient
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E Scaling coefficient

F1,2 Coefficients in second-order slip boundary conditions

H Channel height, characteristic system dimension (m)

Kn Knudsen number

Ma Mach number

Pr Prandtl number

Preff(n) Effective Prandtl number
−→
Q Heat flux vector at the wall (W/m2)

R Specific gas constant (kJ/kg K)

S(n/λ) Knudsen layer shape defect

T Gas temperature (K)

Tjump Temperature jump (K)

Twall Wall temperature (K)

U Gas velocity (m/s)

UMa=1 Gas velocity at Ma = 1 (m/s)

f(n/λ) Scaling function
−→
i n Unit vector normal to and away from a wall

n Normal distance away from a wall (m)

p Pressure (Pa)
−→q Tangential heat flux (W/m2)
−→u slip Slip velocity (m/s)
−→u wall Wall velocity (m/s)

γ Ratio of specific heats

ζslip Velocity slip coefficient

ζjump Temperature jump coefficient

κ Thermal conductivity (W/mK)

κeffA
Effective conductivity — Model A (W/mK)

κeffB
Effective conductivity — Model B (W/mK)

λ Equilibrium mean free path of the gas (m)

λeff Effective mean free path (m)

λoriginal Original mean free path (m)

µ Dynamic viscosity (kg/m s)

µeffA
Effective viscosity — Model A (kg/m s)

µeffB
Effective viscosity — Model B (kg/m s)

Π Stress tensor at the wall (N/m2)

ρ Gas density (kg/m3)

σU Tangential momentum accommodation coefficient

σT Tangential energy accommodation coefficient
−→τ Tangential shear stress (N/m2)

1 Identity tensor
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