Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Freedericksz transitions in circular toroidal layers of smectic C liquid crystals

Kidd, J.E. and Constanda, Christian and Stewart, Iain W. (2001) Freedericksz transitions in circular toroidal layers of smectic C liquid crystals. IMA Journal of Applied Mathematics, 66 (4). pp. 387-409. ISSN 1464-3634

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The aim of this paper is to consider theoretically a Freedericksz transition for concentric toroidal layers of smectic C liquid crystal arising from a simple geometric setup, thereby extending the results of Atkin and Stewart [Q. Jl Mech. Appl. Math., 47, 1994] who considered spherical layers of smectic C in the usual cone and plate geometry. Application of smectic continuum theory leads, after suitable approximations are made, to a linear governing equilibrium equation which is satisfied by both the trivial solution and a variable solution involving Bessel functions. We are able to determine the critical magnitude cH of the magnetic field H at which this variable solution exists, and a standard energy comparison reveals that the variable solution is expected to be more energetically favourable than the zero solution provided H > cH. Numerical examples of critical thresholds are given, which are comparable to those in the literature for nematics. The paper ends with a discussion section and some indication of possible future work.