
 

Global Trajectory Optimisation: 
Can we Prune the Solution Space 

when Considering Deep Space 
Manoeuvres? 

Final Report 
Authors: Massimiliano Vasile, Matteo Ceriotti, Gianmarco Radice 
Affiliation: Department of Aerospace Engineering, University of Glasgow, UK 
Authors: Victor Becerra, Slawomir Nasuto, James Anderson 
Affiliation: School of Systems Engineering, The University of Reading, UK 
 
ESA Researcher(s): Claudio Bombardelli 
 
Date: 01/01/2008 
 
Contacts: 
 
Massimiliano Vasile 
Tel: +44 (0)141 330 6465 
Fax: +44 (0)141 330 5560 
e-mail: m.vasile@aero.gla.ac.uk 

 
Claudio Bombardelli 
Tel: +31 (0)71 565 8718 
Fax: +31 (0)71 565 8018 
e-mail: act@esa.int 

 
 
 

 
Available on the ACT website  
http://www.esa.int/act 

Ariadna ID: 06/4101 
Study Duration: 6 months 

Contract Number: 20273/06/NL/HE 

mailto:m.vasile@aero.gla.ac.uk�
mailto:act@esa.int�
http://www.esa.int/act�


 2

TABLE OF CONTENTS 

Table of Contents............................................................................................................ 2 

Preface ............................................................................................................................. 5 
General introduction..................................................................................................... 5 
Study objectives............................................................................................................ 6 
Document structure....................................................................................................... 7 
References .................................................................................................................... 8 

PART 1 Modelling................................................................................................... 10 
1.1 Introduction .................................................................................................... 10 
1.2 Modelling alternatives .................................................................................... 11 
1.3 Velocity formulations vs. position formulations ............................................ 12 

1.3.1 Position formulation ............................................................................... 12 
1.3.2 Velocity formulation .............................................................................. 13 
1.3.3 Implications of the two formulations ..................................................... 14 

1.4 Common assumptions .................................................................................... 15 
1.5 Trajectory model 1 ......................................................................................... 15 

1.5.1 Gravity assist model ............................................................................... 15 
1.5.2 Deep space leg model ............................................................................. 17 
1.5.3 Discussion on model complexity............................................................ 18 
1.5.4 Optimisation formulation ....................................................................... 18 

1.6 Trajectory model 2 ......................................................................................... 18 
1.6.1 Deep space flight with multiple manoeuvres model .............................. 20 
1.6.2 Powered swing-by model ....................................................................... 20 
1.6.3 Discussion............................................................................................... 21 

1.7 Block model.................................................................................................... 22 
1.7.1 Application to the trajectory ................................................................... 25 

1.7.1.1 Interfaces...................................................................................................................25 
1.7.1.2 States .........................................................................................................................25 
1.7.1.3 Blocks .......................................................................................................................26 
1.7.1.4 Feasibility, evaluability and evaluation order ...........................................................27 

1.7.2 Reproducing other models...................................................................... 28 
1.7.2.1 Model 1 .....................................................................................................................28 
1.7.2.2 Model 2 .....................................................................................................................29 

1.8 References ...................................................................................................... 30 

PART 2 The Incremental Approach ..................................................................... 31 
2.1 Introduction .................................................................................................... 31 
2.2 The Incremental algorithm ............................................................................. 31 

2.2.1 Back pruning .......................................................................................... 35 
2.3 Box Collection and Affine Transformation.................................................... 35 

2.3.1 Method 1................................................................................................. 37 
2.3.2 Method 2................................................................................................. 38 



 3

2.3.3 Discussion............................................................................................... 38 
2.4 Searching for Partial Solutions ....................................................................... 39 

2.4.1 Multi-start algorithm .............................................................................. 39 
2.4.2 EPIC ....................................................................................................... 39 

2.5 Pruning Process .............................................................................................. 40 
2.5.1 Method 1................................................................................................. 40 
2.5.2 Method 2................................................................................................. 41 
2.5.3 Method 3................................................................................................. 42 

2.6 Discussion....................................................................................................... 43 
2.7 Incremental Trajectory Planning .................................................................... 44 

2.7.1 Swing-by sequence definition ................................................................ 44 
2.7.1.1 Preliminary results ....................................................................................................47 

2.7.2 Block sequence definition ...................................................................... 47 
2.7.3 Sequence completion.............................................................................. 48 
2.7.4 Feasibility and evaluability (evaluation order)....................................... 48 
2.7.5 Parameters .............................................................................................. 48 
2.7.6 Incremental approach ............................................................................. 48 

2.8 Results ............................................................................................................ 50 
2.8.1 EVM transfer .......................................................................................... 51 
2.8.2 EEM Transfer ......................................................................................... 54 
2.8.3 EEVVMe Transfer.................................................................................. 59 
2.8.4 EVVMeMe Trasnfer............................................................................... 64 

2.8.4.1 Search Space Analysis ..............................................................................................70 
2.9 Final Remarks................................................................................................. 74 
2.10 References ...................................................................................................... 75 

PART 3 Extending the GASP Method .................................................................. 76 
3.1 Global optimisation algorithms ...................................................................... 76 

3.1.1 Introduction ............................................................................................ 76 
3.1.2 Differential Evolution, DE ..................................................................... 76 
3.1.3 Particle Swarm Optimisation, PSO ........................................................ 77 

3.2 Pruning algorithm for Model 2....................................................................... 78 
3.2.1 Introduction ............................................................................................ 78 
3.2.2 Desirable properties................................................................................ 79 
3.2.3 Pruning algorithm with Deep Space Manoeuvres .................................. 79 
3.2.4 Problem definition .................................................................................. 80 
3.2.5 Two phase mission with Deep Space Manoeuvres ................................ 81 
3.2.6 Pruning algorithm for more than two phases ......................................... 88 
3.2.7 Complexity analysis ............................................................................... 89 
3.2.8 Pruning complexity ................................................................................ 89 
3.2.9 Results .................................................................................................... 92 

3.3 Optimal sequence selection .......................................................................... 103 
3.3.1 Introduction .......................................................................................... 104 
3.3.2 Non-linear integer programming .......................................................... 107 
3.3.3 A hybrid approach to planetary sequence optimization ....................... 108 
3.3.4 Results .................................................................................................. 112 

3.4 Summary....................................................................................................... 115 
3.5 References .................................................................................................... 118 

 



 4

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(This page is left intentionally blank) 
 
 
 
 
 
 



 

 

5

PREFACE 

This document contains a report on the work done under the ESA/Ariadna study 
06/4101 on the global optimization of space trajectories with multiple gravity assist 
(GA) and deep space manoeuvres (DSM). The study was performed by a joint team of 
scientists from the University of Reading and the University of Glasgow. 

General introduction 
Multiple gravity-assist trajectories have been extensively investigated over the last forty 
years, and their preliminary design has been approached mainly relying on the 
experience of mission analysts and following simplifying assumptions in unison with 
systematic searches or some simple analysis tools such as the Tisserand’s graph [1, 2].  
On the other hand, since at the early stage of the design of a space mission a number of 
different options is generally required, it would be desirable to automatically generate 
many optimal or nearly optimal solutions over the range of the design parameters 
(escape velocity, launch date, time of flight, etc…), accurately enough to allow a correct 
trade-off analysis. 
Recently, different attempts have been carried out toward the definition of automatic 
design tools, although so far most of these tools have been based on systematic search 
engines. An example is represented by the automatic tool for the investigation of 
multiple gravity-assist transfers, called STOUR, originally developed by JPL and 
subsequently enhanced by Longuski et al. at Purdue university [3]. This tool has been 
extensively used for the preliminary investigation of interplanetary trajectories to Jupiter 
and Pluto [4], for the design of the tour of Jovian moons and for Earth-Mars cycling 
trajectories. 
In the last ten years, different forms of stochastic search methods have also been applied 
to orbit design, starting from the work of Coverstone et al. [5] on the use of multi-
objective genetic algorithms for the generation of first guess solutions for low-thrust 
trajectories, to more recent works on the use of single-objective genetic algorithms for 
ballistic transfers [6] or to the use of hybrid evolutionary search method for preliminary 
design of weak stability boundaries (WSB) and interplanetary transfers. 
More recently, it has been shown [7, 8] that if powered swing-bys are considered and no 
deep-space manoeuvre are introduced, the solution space of multiple gravity assist 
optimisation problem (MGA) can be pruned considerably in polynomial time (with a 
small exponent). This particular property allows an efficient solution of even highly 
complex trajectories in polynomial time through a deterministic branch and prune 
algorithm. 
However, an MGA trajectory model with no deep-space manoeuvres does not allow to 
design a number of interesting trajectories. If the problem of multiple gravity assist with 
deep space manoeuvres (MGADSM) could be pruned in polynomial time with a small 
exponent, an efficient branch and prune algorithm could be used as in the simpler MGA 
case. The introduction of DSM offers the further advantage of providing a reasonable 
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approximation of MGA trajectories with low-thrust arcs, thus allowing to generate first 
guess solutions also for that kind of trajectories. 
If a transfer arc is no more simply ballistic but is shaped by one or more propelled 
manoeuvres (either impulsive or low-thrust) the number of degrees of freedom increases 
significantly. Hence, an efficient deterministic solution process would have to make use 
of additional information (with respect to the simple ballistic case) to cut down the 
number of possible alternatives. Moreover a complete automatic tool should allow to 
select and combine the most appropriate transfer arcs (ballistic, deep-space, low-thrust, 
as for example in the JPL code STOUR-LTGA where exponential sinusoids are used 
together with ballistic arcs [7]). Finally the optimal sequence of celestial bodies should 
be selected automatically since, as demonstrated in [7], its correct choice has a major 
impact on the final result. 
Few examples of free sequence solutions exist, some using a deterministic two level 
approach in which the sequence is selected at an upper level and then is optimised at a 
lower level [3, 8], few other use an integrated approach in which discrete and 
continuous quantities are treated together in the same formulation [9, 10]. 
The most general case in which the model would contain integer, real and logical 
quantities (for the selection of the transfer arcs) all together can be formulated as a 
hybrid optimisation problem. The solution of these kinds of problems is still an open 
issue and few recent examples can be found in the literature [11, 12]. In these examples 
hybrid optimal control problems, which are a special case of hybrid system theory, are 
solved by a combination of direct collocation, for continuous variables, and of some 
branch and bound or integer programming approach to deal with discrete quantities. 
Hybrid optimal control problems are conceptually equivalent to the problem we are 
addressing in this study and similar solution techniques can be applied even to our case. 
In this study we will address the solution of hybrid problem by a combination of 
deterministic and stochastic techniques. 

Study objectives 
In order to address the definition and implementation of an efficient tool for the solution 
of the MGADSM problems, the present study aims at reaching the following objectives. 
The primary objective of the study should be to expand the results obtained on the 
multiple gravity assist problem [13, 14] to the more complex case in which one or more 
trajectory legs include a deep space manoeuvre. In particular: 
 
1. Pruning the solution space in case one or more deep space manoeuvres are 
included in the trajectory description 
The algorithm complexity for the problem of designing a trajectory made of multiple 
gravity assist manoeuvres and deep space manoeuvres should be analysed. The outcome 
of this analysis should lead to the definition of a set of efficient pruning techniques for 
this specific problem. The proposed pruning techniques should allow a fast solution of 
problems with a large number of deep space manoeuvres. The search space reduction 
obtained with the developed pruning techniques should allow a reliable identification 
of: launch windows, mission options over a wide range of launch dates, mission cost in 
terms of Δv, epoch of the manoeuvres for a given sequence. The pruning technique can 
be combined with additional search mechanisms that operate on the remaining parts of 
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the solution space. This part of the work will require the development of a trajectory 
model that includes deep space and gravity assist manoeuvres. The complexity analysis 
will be performed on the model developed and the pruning technique will make use of 
the characteristics of the model. 
 
2. Integration between the various blocks comprising the trajectory 
A general trajectory has to be described in terms of elementary building blocks, such as: 
purely ballistic arcs, ballistic arcs with one or more deep space manoeuvres, low-thrust 
arcs, gravity assist manoeuvres, departure and arrival conditions. The optimal 
combination of the building blocks and the simultaneous optimisation of each single 
one can be formulated as a hybrid optimisation problem with discrete and continuous 
quantities. Elements such as deep space and gravity manoeuvres can be seen as singular 
events. The hybrid problem should allow the selection of number and sequence of legs, 
as well as number and sequence of singular events.  
 
3. Feasibility proof of such integration for a number of agreed test cases 
The search and pruning methodology applied to the integrated hybrid problem should be 
tested on a number of selected cases. The relevant indexes of performance and metrics 
will be the time needed to identify a set of solutions and the number of solutions in the 
set, the feasibility and local optimality of the solutions (distance from the local 
minimum, where the local minimum is located by using a local optimiser initialised at 
the solutions found by the hybrid optimiser), optimality of the generated solutions in 
comparison to other techniques. 
 
4. Feasibility proof of the use of PSO for global trajectory design 
A secondary study objective is to apply Particle Swarm Optimisation (PSO) [15] to the 
pruned part of the solution space. For this part of the study it is required to investigate 
how to automatically tune the relevant parameters of PSO to make its performance 
adaptable to a wide range of problems. 

Document structure 
The document is structured into three main parts: 

• PART 1: MODELLING. This part contains an extensive description of all the 
mathematical and computational trajectory models that were used in the study. 
This part includes a description of each of the components of a trajectory model 
and a discussion on the expected computational complexity of the algorithms. In 
particular two trajectory models will be presented: one with an exact a priori 
satisfaction of the physical constraints characterising gravity assist manoeuvres, 
and another with an inexact a priori satisfaction of those constraints. The global 
optimisation of trajectories based on the former model will be presented in PART 
2 while the global optimisation of trajectories based on the latter model will be 
presented in PART 3. 

• PART 2: THE INCREMENTAL APPROACH (University of Glasgow). This part 
contains the results of the effort of the group at the Department of Aerospace 
Engineering of the University of Glasgow. The section contains a general 
description of the basic idea underneath the incremental approach for the solution 
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of space trajectory problems. This approach is applied to the solution of problems 
with an a priori exact satisfaction of the physical GA constraints. Different 
incremental approaches will be presented. Each one provides a different way of 
reducing the search space around areas where optimal solutions are most likely to 
be. In addition, the section presents an incremental approach to the automated 
planning of multiple gravity assist trajectories where the sequence of swing-by 
planets and the nature of each transfer leg (low-thrust, ballistic, DSMs) is 
unknown a priori. A discussion on the algorithmic complexity of the incremental 
approach is also included. 

• PART 3: EXTENDING THE GASP METHOD (University of Reading). This part 
contains the results of the effort of the group at the University of Reading. The 
section contains a description of the pruning approach applied to trajectory models 
with an inexact a priori satisfaction of the GA constraints. A demonstration of the 
algorithmic complexity of the pruning algorithm is also included. 
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PART 1 MODELLING 

1.1 Introduction 
An engineering design problem can always be tackled with a two-stage approach: 
problem modelling and problem solution, where often the search for a solution is 
represented by an optimisation procedure. Modelling is the task of transcribing a 
physical phenomenon into a mathematical representation. 
The modelling stage has a particular influence on the definition and development of 
preliminary design methodologies since there is always a trade-off between the 
precision of the required solution and the computational cost associated to its search [1]: 
different models intrinsically contain different kinds of solutions and can favour or not 
their identification. 
This issue becomes of relevant importance when a large number of good first guess 
solutions has to be efficiently generated for an exhaustive preliminary assessment of 
complex engineering problems. In this case, efficiency is quantified as the ratio between 
number of useful solutions and associated computational time. These considerations 
apply to trajectory design as well, therefore the two above mentioned stages, which are 
actually mutually dependent, must be properly defined during the development of an 
effective design tool for the preliminary investigation of complex interplanetary 
transfers.  
In particular, the modelling process requires the identification of the most important 
features of the trajectory that will be analyzed and must reproduce the completeness of 
the problem under investigation, while reducing its complexity. This is a trivial 
consideration, which has not trivial consequences on the effectiveness of the design 
phase, since an oversimplified model could lead to a loss of interesting solutions. 
On the other hand, a proper mathematical model, which reproduces accurately a 
physical phenomenon, is likely to require more efficient search methods, in order to find 
a specific solution. Therefore the problem solution stage needs proper search 
mechanisms or approaches that allow to locate all relevant solutions in a given solution 
domain. This raises the additional issue of the completeness of the search: if the 
problem is at least NP-hard, a complete search could not be practically possible since 
the number of function evaluations to prove optimality of a solution could grow 
exponentially with problem dimension. 
In the following, the attention will be focused on some simple trajectory models of 
increasing complexity in order to derive a good compromise between computational 
cost and solution accuracy. Considering the typical multiple gravity-assist trajectories 
that have been designed and flown so far, some general features can be considered 
relevant in order to maintain the required richness of the search space and to identify all 
the family of solutions that could be potentially interesting for the design of an 
interplanetary mission. In particular a full 3D model both for the trajectory and for the 
gravity assist manoeuvres have been developed including deep space manoeuvres 
(DSM) and using the analytical ephemeris of celestial bodies. The benefits of such a 
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modelling approach can be seen in the design of missions to Pluto, Mercury or to the 
Sun, which require to consider the real inclination of the orbit of the planet or of the 
final heliocentric orbit, and in the design of missions to near earth objects. This 
particular choice is compared, in terms of search space complexity, to a simpler model 
in which DSM are neglected. This simple modification prevents from considering some 
classes of interesting solutions such as, resonant or almost resonant swing-by or free 
orbits before the encounter with a celestial body.  
Since the physics of the Solar system allows to adopt a patched-conic approximation of 
a multiple gravity assist trajectory, a complete transfer trajectory can be reduced to the 
sum of a number of smaller sub-problems with a finite number of design variables. As it 
will be shown in the following, each sub-problem is generally not trivial and may 
produce complex search domains, typically non-smooth, non-convex and multimodal. 
In this section two general trajectory models are presented. Both models describe a 
multiple gravity assist trajectory with multiple deep space manoeuvres. As will be 
explained in the remainder of the chapter, the two models allows for different solution 
approaches. Moreover they could contain a different number and type of solutions: 
some trajectories that exist in one model might not exist in the other. 

1.2 Modelling alternatives 
The design of multiple gravity assist trajectories with low-thrust and coast arcs requires 
the definition of a trajectory model and of a search approach. The search approach will 
use the model to find suitable solutions.  
The first step, therefore, is to identify a proper trajectory modelling approach. Fig. 1.1 
presents the tree of possible alternative modelling approaches. The trajectory legs could 
be modelled with a full integration of the dynamic equations or with a sequence of conic 
arcs and pre-shaped low-thrust arcs liked together. The latter alternative was less 
computationally expensive and therefore more suitable for global search.  
The following choice is to use an unpowered model for the gravity assist manoeuvres or 
a powered model. In the former case the physical equations defining the outgoing 
velocity are solved exactly [2], while in the latter case a Δv correction at the gravity 
assist planet is allowed to match the required outgoing velocity with the achievable one 
[3]. 
We decided to proceed along both branches and to develop two parallel models, in order 
to fully understand the implications of each one of the two. The group in Reading 
followed the powered-GA branch while the group in Glasgow followed the unpowered 
GA branch. 
A further choice for the powered-GA branch was to use a position formulation or a 
velocity formulation. As will be explained in more details in the following chapter, the 
velocity formulation suffers from a dependency problem which leads to an exponential 
growth of the possible alternative paths. For this reason, the position formulation was 
adopted. Furthermore the position formulation allows for a direct application of the 
GASP idea [14]. 
On the side of the unpowered-GA branch the options were to connect the all the sub-
regions remaining after the pruning of the solutions space or to analyse each sub-region 
at the time. As it will be explained in the following chapters the two options have 
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advantages and disadvantages. In this study we followed the connected branch, though 
the disconnected one was put on hold for lack of time. 
The final decision for both the unpowered-GA and the powered-GA branch was on the 
search approach.  
The alternatives on the powered-GA side were to use either a grid sampling or a multi-
start approach. The latter, though stochastic in nature, resulted far more efficient as it is 
explained in PART 3. The combination of grid sampling for some of the components of 
the solution vector and multi-start for other components could improve the robustness of 
the method but was put on hold. 
The alternatives on the side of the unpowered-GA side were to look only for feasible 
regions according to some feasibility criterion or to look directly for all locally optimal 
solutions. Both branches were explored and will be presented in the following.     
  
 

 
 

Fig. 1.1. Alternative trajectory modelling approaches: red boxes represent all the discarded methods while 
orange boxes are methods put on hold which deserve further investigation 

 

1.3 Velocity formulations vs. position formulations 
The design of a transfer leg with deep space manoeuvre (DSM) can be obtained in 
different ways. We detailed, in the following, two possible formulations that have 
radically different implications: velocity formulation and position formulation. 

1.3.1 Position formulation 

In the position formulation, the position vectors of the deep space manoeuvres are 
assigned (or represent the unknown of the problem in the search for an optimal transfer) 
and the transfer leg connecting two deep space manoeuvres is computed independently 
of the other legs either by a Lambert arc or by a shape-based low-thrust arc. The 
modulus of the velocity discontinuity at the deep space manoeuvre point (or node in the 
following) is the entity of the Δv manoeuvre. Fig. 1.2 is a schematic of the position 
formulation, the vectors 2r  and 3r  represent the positions of the two deep space 
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manoeuvres. The modulus and direction of the manoeuvres are computed a posteriori as 
a result of the discontinuity in the velocity along the trajectory at the nodes.  

 
Fig. 1.2. Schema of the position formulation. Each position vector is assigned and each leg of the 

trajectory is solved independently of the others. The velocities at the nodes are computed a posteriori. 
 

1.3.2 Velocity formulation 

In the velocity formulation, the modulus and direction of the Δv manoeuvres are 
assigned (or are the unknowns of the problem when searching for an optimal transfer) 
and the position and velocity at a node is obtained by propagating, forward in time, the 
state vector (position and velocity) at the previous node. Fig. 1.3 is a schematic of the 
velocity formulation. 
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Fig. 1.3. Schema of the velocity formulation. The variation of the velocity at each node is assigned and 
each leg of the trajectory is obtained by propagation of the state vector. Thus, the position at each node 

depends on the velocity at the previous node. 
 

1.3.3 Implications of the two formulations 

The position formulation allows us to compute each arc independently of the other arcs. 
If we assume that the problem is planar and that the distance of each DSM from the 
centre of the coordinate system is constant. Therefore, the position of the DSM can be 
identified by a single angle θDSM. If we consider three DSMs and we discretise each 
angle θDSM with k steps the number of possible legs from DSM 1 to DSM 2 is equal to 
k2 and the number of possible legs from DSM 2 to DSM 3 is again k2. The total number 
of independent legs is, therefore, 2k2 and if N deep space manoeuvres are considered the 
number of possible independent legs would be Nk2. If we see this as a network 
connecting the departure to the arrival, the number of nodes in the network is Nk+2 and 
the number of legs connecting the network would be Nk2+2k. 
 
In the case of the velocity formulation, the computation of each arc needs the full state 
vector at the beginning of the arc. As a consequence if we assume that the modulus of 
the DSM is given, the problem is planar and the time of flight for each leg is fixed, we 
can use a single angle αDSM to define the direction of the DSM. Starting from the 
departure point and discretising the αDSM for each DSM with k steps we get that for 
three DSMS the number of legs from departure to DSM 1 is k, the number of legs from 
DSM 1 to DSM 2 is k2 and the number of legs from DSM 2 to DSM 3 is k3. If then we 
consider N deep space manoeuvres the number of legs is kN. 
 
The implication of the exponential growth of the number of legs for the velocity 
formulation is that, in the case of a discrete representation of the design variables (in 
this case the angles θDSM and αDSM), the generation of the whole solution space would 

Departure 
Body 

Arrival 
Body 



 15

require an effort that grows exponentially with the number of DSMs. On the other hand 
the generation of the whole solution space for the position formulation would have a 
cost that grows polynomially with the number of DSMs. 
Furthermore, since each leg of the position formulation can be generated independently 
of the others, the evaluation of each leg would require only the velocity at the end of the 
k possible preceding and the velocity at the beginning of the following k legs. 
On the other hand, for the velocity formulation, since the position of the DSM depends 
on all the preceding legs, the evaluation on leg requires the evaluation of all the 
preceding ones. 
  

1.4 Common assumptions 
A multi-gravity assist trajectory (MGA) can be defined as a sequence of transfer arcs 
and swing-bys of gravitational bodies, starting from a departure one and ending at a 
target one (or a target orbit). Along the transfer arcs, the engine of the spacecraft can be 
fired to produce a minor change in its velocity vector. Each swing-by, instead, exploits 
the gravity of the celestial body to produce a major change in the velocity of the 
spacecraft. 
On the scale of the solar system, both the propelled manoeuvres and the gravity-assist 
manoeuvres can be generally considered instantaneous. Thus, as a first approximation, 
during each manoeuvre, the heliocentric position of the spacecraft does not change, and 
coincides with the position of the celestial body at the time of the swing-by, in the case 
of a gravity assist manoeuvre. 
In other words, each manoeuvre has the effect of introducing a discontinuity in the 
velocity vector, but not in the position vector. The propelled manoeuvres are called deep 
space manoeuvres (or DSM), and vΔ  is the modulus of the resulting change in velocity. 
This particular model of a multi-gravity assist trajectory is called linked-conic 
approximation since it is made of conic arcs (the transfer arcs) linked together by 
impulsive changes in the velocity vector (given by the swing-bys). 
For each instant of time the position and velocity of the celestial bodies are given by 
analytical ephemerides, with respect to a heliocentric, ecliptic, inertial reference frame. 
Therefore, given a sequence of celestial bodies and times of encounter, the position of 
each gravity assist manoeuvre is fully determined. For the case under examination, all 
the celestial bodies are planets. At the departure planet, the velocity of the spacecraft is 
the sum of the launch velocity and the heliocentric velocity of the planet and is normally 
limited by the launch capabilities. 

1.5 Trajectory model 1 

1.5.1 Gravity assist model 

As mentioned above, the effect of the gravity of a planet is to instantaneously change 
the velocity vector of the spacecraft. The relative incoming velocity vector and the 
outgoing velocity vector, at the planet swing-by, have the same modulus but different 
directions; therefore the heliocentric outgoing velocity results to be different from the 
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heliocentric incoming one. In the linked conic model the spacecraft is assumed to follow 
a hyperbolic trajectory with respect to the swing-by planet. The angular difference 
between the incoming relative velocity iv%  and the outgoing one ov%  depends on the 
modulus of the incoming velocity and on the pericentre radius pr  [4]. Both the relative 
incoming and outgoing velocities belong to the plane of the hyperbola. However, in the 
linked-conic approximation, the manoeuvre is assumed to occur at the planet, where the 
planet is a point mass coinciding with its centre of mass. Therefore, given the incoming 
velocity vector, one angle is required to define the attitude of the plane of the hyperbola 
Π. There are different possible choices for the attitude angle γ ; the one proposed in [2] 
has been adopted (Fig. 1.4): γ  is the angle between the vector Πn , normal to the 
hyperbola plane Π , and the reference vector rn , that is normal to the plane containing 
the incoming relative velocity and the velocity of the planet pv . 

 

Π  
rn

Πn

iv%
ov%

γ

pv  
 

Fig. 1.4: Reference for the swing-by plane angle γ . 
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Fig. 1.5: Schematic representation of a multiple gravity assist trajectory. 
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1.5.2 Deep space leg model 

A complete MGA trajectory is divided into a number of legs connecting a sequence of 
celestial bodies (Fig. 1.5). Given a sequence of PN  planets, there exist 1,..., 1Pi N= −  
legs, each of them beginning and ending with an encounter with a planet. Each leg i is 
made of two conic arcs: the first, propagated analytically forward in time, ends where 
the second, solution of a Lambert’s problem [5], begins. The two arcs have a 
discontinuity in the absolute heliocentric velocity at their matching point iM . Each 
DSM is computed as the vector difference between the velocities along the two conic 
arcs at the matching point. Given the transfer time iT  and the variable [ ]0,1iα =  relative 
to each leg i, the matching point is at time , , 1DSM i f i i it t Tα−= + , where , 1f it −  is the final 
time of the leg 1i − . The velocity vector at the departure planet can be a design 
parameter and is expressed as: 
 0 0 sin cos ,sin sin ,cos

T
v δ θ δ θ δ⎡ ⎤= ⎣ ⎦v  (1.1) 

with the angles δ  and θ  respectively representing the declination and the right 
ascension with respect to a local reference frame with the x axis aligned with the 
velocity vector of the planet, the z axis normal to orbital plane of the planet and the y 
axis completing the coordinate frame. This choice allows easily constraining the escape 
velocity and asymptote direction while adding the possibility of having a deep space 
manoeuvre in the first arc after the launch. This is often the case when escape velocity 
must be fixed due to the launcher capability or to the requirement of a resonant swing-
by of the Earth (Earth-Earth transfers). 
In order to have a uniform distribution of random points on the surface of the sphere 
defining all the possible launch directions, the following transformation was applied [6]: 

 ( )
2
cos 2 1

2

θθ
π

δ π
δ

=

+ +
=

 (1.2) 

In these equations, θ  and δ  are the free, non-dimensional variables. It results that the 
sphere surface is uniformly sampled when a uniform distribution of points for 

[ ], 0,1θ δ ∈  is chosen. 
Once the heliocentric velocity at the beginning of leg i, which can be the result of a 
swing-by manoeuvre or the asymptotic velocity after launch, is computed, the trajectory 
is analytically propagated until time ,DSM it . The second arc of leg i is then solved 
through a Lambert’s algorithm, from iM , the Cartesian position of the deep space 
manoeuvre, to iP , the position of the target planet of phase i, for a time of flight 

( )1 i iTα− . Two subsequent legs are then joined together using the swing-by model. 
Given the number of legs of the trajectory 1L PN N= − , the complete solution vector for 
this model is: 

 
0 0 1 1 1 ,1 2 2

, 1 1 1 , 1

, , , , , , , , , ,...,

, , , ,..., , , ,
L L L L

p

i p i i i N p N N N

v t T r T

r T r T

θ δ α γ α

γ α γ α+ + − −

⎡= ⎣
⎤⎦

x
 (1.3) 
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where 0t  is the departure date. 
The formulation of the problem in such way is essential for the pruning approach that 
will be proposed in the following. 

1.5.3 Discussion on model complexity 

Trajectory model 1 solves explicitly the gravity assist constraints. To do that it requires 
the incoming velocity before computing the outgoing velocity. In this respect model 1 is 
equivalent to the velocity formulation for DSMs and presents the same dependency 
problem. The growth in the number of possible paths is therefore expected to be 
exponential if a systematic grid decomposition is employed. 
The effort of the incremental approach, that will be presented in the second part of this 
report, is to avoid or reduce the exponential growth of the possible paths.  
 

1.5.4 Optimisation formulation 

The design of a multi-gravity assist transfer can be transcribed into a general nonlinear 
programming problem, with simple box constraints, of the form: 
 min ( )

D
f

∈x
x  (1.4) 

One of the appealing aspects of this formulation is its solvability through a general 
global search method for box constrained problems. 
Depending on the kind of problem under study, the objective function can be defined in 
different ways. Here we choose to concentrate on the problem of minimising the total 

vΔ  of the mission, therefore defining: 

 ( ) 0
1

LN

i f
i

f v v v
=

= + Δ + Δ∑x  (1.5) 

where ivΔ  is the velocity change due to the DSM in the i-th leg, and fvΔ  is the 
manoeuvre needed to inject the spacecraft into the final orbit. 

1.6 Trajectory model 2 
Each MGA trajectory can be decomposed into a number of swing-by phases and deep 
space flight phases. Each phase can be modelled in many different ways, but under the 
assumption of patched conics framework, instantaneous swing-bys, and neglecting the 
spacecraft mass, we can say that for any model, a swing-by phase matches the 
subsequent deep space flight phase if: 

• The swing-by planet is the same as the departure planet of the deep space flight. 
• The swing-by time is the same as the initial time of the deep space flight. This 

also implies that the position of the spacecraft is the same, and matches with the 
position of the planet at that time (patched conics framework). 

• The swing-by outgoing velocity is equal to the initial velocity of the deep space 
flight phase. 

In the same way, a deep space flight phase matches the subsequent swing-by phase if: 
• The swing-by planet is the same as the arrival planet of the deep space flight. 
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• The deep space flight final time is the same of the swing-by time. This also 
implies that the position of the spacecraft is the same, and matches with the 
position of the planet at that time (patched conics framework). 

• The initial velocity of the deep space flight phase is equal to the swing-by 
incoming velocity. 

Given that the sequence of planets is defined a priori in some way, then the quantities to 
match are the velocity and the time. 
Now, according to model 1, the final velocity in each phase is not a free variable: rather, 
it is an output of the model, given all the needed parameters. On the other hand, the 
initial velocity of each phase (both swing-by and deep space flight) is in input of the 
phase, and must be specified to compute that phase, as pictured schematically in Fig. 
1.6. 

 
Fig. 1.6. Block representation, with inputs and outputs, of the deep space flight phase and the powered 

swing-by phase for model 1. 
 
This avoids using this model for decoupling each phase. In fact, to compute any phase 
the initial velocity is required. It could be arbitrarily set, but then there is no guarantee 
to find any set of parameters for the preceding phase which give that final velocity. The 
only way to guarantee the matching with this model is to compute the phases 
sequentially, such that the final velocity of one phase can be used as initial velocity for 
the following one. 
The alternative is to have a model for which deep space legs and swing-bys can be 
computed independently, and then matched one another, to create a feasible trajectory. 
The aim of model 2, in particular, is to remove the dependency, for each leg, on the 
initial velocity. This is achieved by using a particular model, such that the deep space 
flight phase only requires the initial and final times, and the parameters, while the initial 
and final velocities are outputs. On the other hand, initial and final velocities are inputs 
for the swing-by model, together with the time (Fig. 1.7). 

 
Fig. 1.7. Block representation, with inputs and outputs, of the deep space flight phase and the powered 

swing-by phase for model 2. 
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1.6.1 Deep space flight with multiple manoeuvres model 

This phase is modelled as a sequence of Lambert arcs. The first arc starts at the 
departure planet, and the last arc ends at the arrival planet. Each arc is connected with 
the following one in a point in the deep space, where a deep space manoeuvre will 
occur. The number of deep space manoeuvres in the phase is one fewer than the number 
of arcs. To compute each Lambert arc, the position (three variables) and the time (one 
variable) of each DSM shall be specified as parameters of the phase. 

 
Fig. 1.8. Model 2 requires some parameters to specify the position of each DSM in a deep space flight 

phase, in addition to the timing. 
 
The position of each deep space manoeuvre is specified in polar coordinates. With 
reference to Fig. 1.8, the three components are as following: 

• Radial distance from the Sun DSMr ; 
• Angle between the position vector of the first planet 1Pr  and the projection on the 

plane of the first planet’s orbit DSM′r  of the position vector of the DSM DSMr  (in-
plane angle); 

• Angle between the projection on the plane of the first planet’s orbit of the position 
vector of the DSM DSM′r  and the position vector of the DSM itself DSMr  (out-of-
plane angle). 

Rather than inputs, the initial and final velocities of the phase are the outputs of this 
model. The magnitude of all the deep space manoeuvres is also an output, as this is an 
important parameter of merit of the considered phase. 

1.6.2 Powered swing-by model 

The swing-by phase of model one shall be able to join incoming and outgoing velocity 
vectors, which have been computed as final velocity of the preceding deep space flight 
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phase, and initial velocity of the following one. The idea, then, is to match the two 
velocity vectors with an hyperbola around the planet A minimum radius shall be given, 
since there is a limit on the altitude of the spacecraft on the planet (due to the surface of 
the planet or its atmosphere). The model tries to find a hyperbola, varying the radius of 
pericentre, such that the velocities at infinity are consistent with the inputs. If the 
hyperbola is not found, then the solution requires a manoeuvre at the pericentre (thus 
the name of powered swing-by). The resulting swing-by, in this case, is made by two 
legs of hyperbolae, connected at the pericentre through a change in velocity (Fig. 1.9). 

 
Fig. 1.9. Schematic representation of the powered swing-by. The propelled, instantaneous manoeuvre is 

preformed at the pericentre of the two hyperbolas. 

1.6.3 Discussion 

Suppose that the problem involves the departure from planet 1, and then, with the help 
of the swing-by of planet 2, the spacecraft reaches planet 3. In this trajectory there are 
two deep space flight phases and one swing-by phase. 
Given the starting time and ending time for the first deep space flight phase (between 
planet 1 and 2), and its parameters, the initial and final velocities of the phase can be 
obtained. 
The second deep space flight phase (between planet 2 and 3) can be computed in the 
same way. Now, if the departure time is chosen to be the same as the arrival time of the 
preceding phase, then the two phases can be joined with a powered swing-by. This is 
done easily, since the incoming and outgoing velocity vectors are known: they are the 
final velocity for the first deep space flight phase and the initial velocity for the second 
deep space flight phase, respectively. 
This model is considered to be “uncoupled”. The reason is that each deep space flight 
phase can be computed independently from all the others. 
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Fig. 1.10. This schema represents the procedure to build a trajectory using model 2. After having fixed the 
times at the planets, it is possible to compute the deep space flight phases, given the parameters. Then two 

consecutive deep space flight phases can be joined together through the swing-by. 
 

1.7 Block model 
In this section, a different model is proposed. Since it allows to decompose a trajectory 
using basic building blocks, it is a very generic model. Both model 1 and model 2 can 
be reproduced, together as a combination of them or other different models. 
 
An interplanetary, multiple swing-by, multiple deep space manoeuvre trajectory can be 
decomposed into phases. In general, these are of 2 kinds: 

• Deep space flight; 
• Swing-by. 

These phases are alternating to compose the whole trajectory. The deep space flight 
phase can be further split into smaller legs, depending on how the leg is computed 
(propagation of initial conditions, Lambert arc, …) or depending on the type of arc 
(coastal arc, low-thrust arc, …). Each phase or leg can be represented by a block, and 
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different blocks model different parts of the trajectory, or the same part, but using 
different models. Each block is linked with the following and the preceding one through 
the spacecraft state (i.e. time, position and velocity). 
 
Let us split the trajectory as a sequence of blocks. Each block models, in a certain way, 
a part of the trajectory. An ordered sequence of blocks defines a complete trajectory, by 
modelling each part of it in a temporal sequence. All the blocks have duration (they can 
have zero duration, i.e. be instantaneous): in particular, a characteristic of a block is 
whether its duration is fixed, or it is a free parameter of the trajectory. Blocks in the 
sequence cannot be overlapped in time. 
Each block has 2 interfaces, to join the following block and the previous block (in the 
temporal sequence). The interface is intended to match the state of the spacecraft 
between 2 continuous blocks. An interface is characterised by its type: only blocks with 
the same type of interface can be continuous in the sequence. This means that the 
interface type is a constraint for matching the blocks in the sequence. 
An example of interface for a block which is modelling a deep space flight leg, is 
composed by position and velocity vectors of the spacecraft. For example, a propagation 
block with its interfaces is shown in Fig. 1.11. 

 
Fig. 1.11. The Propagation block, given an initial position and velocity, propagates forward in time. 

 
An interface type has a set of variables, which must be the same on all the interfaces of 
that type. Depending on the block, each variable on the interface can be an input or an 
output for that block. For the propagation block shown in Fig. 1.11, both position and 
velocity are inputs on the left hand side interface, while they are output on the right 
hand side one. This makes sense, as to propagate the trajectory, the initial position and 
velocity are requested (i.e., before the block), while the result of the propagation is the 
final position and velocity (i.e. after the block). In this document, an input is shown with 
an arrow going into the block, while for the output the arrow is pointing outwards. Two 
blocks can be consecutive in a sequence if they have the same interface type and all the 
inputs on the interface of one block are outputs on the interface of the other block, and 
vice versa. When these conditions are satisfied for all the couples of continuous blocks, 
then the sequence is feasible. In the representation of the blocks in the figures of this 
document, the sequence is feasible if the arrows, representing inputs and outputs for 
each block, have the same direction on the 2 consecutive interfaces of adjacent blocks, 
as pictured in Fig. 1.12. 
The inputs on both the interfaces must be known to evaluate a block. 
 

 
Fig. 1.12. An example of a feasible sequence of blocks with different types of interfaces. 
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Additionally, a block may have a set of parameters, which are also needed to evaluate 
the block, but they do not belong to any of the interfaces. When a block is evaluated, the 
outputs are then available on the interfaces. Additionally, a parameter of merit can be 
available as an additional output for the block. 
A set of states for the spacecraft is defined between each couple of consecutive blocks 
in the sequence. Differently from the inputs and the outputs, the states shall be known 
before the evaluation of any block, for all the sequence. A particular state is the time. A 
block, when evaluated, can read the states at both its interfaces. If the duration of the 
block is not fixed, then its duration is given by the difference of the state time at its 
interfaces. 
For example, let us consider a block which is computing a Lambert arc (Fig. 1.13). This 
block is a way of modelling a (part of) a deep space flight phase. Its duration is not 
fixed, and its interfaces may be defined with 2 quantities: the position of the spacecraft 
and its velocity. Since to compute a Lambert arc, the initial and final position shall be 
given, then we can consider that the position on both the interfaces is an input of the 
block. In the same way, the result of computing the Lambert arc is the velocity vector at 
its extrema: so, the velocities are outputs of the block. For computing a single 
revolution, direct Lambert arc, no parameters are needed, other than the initial and final 
position, and the duration. Thus, this block will not have any additional parameter.  

 
Fig. 1.13. The Lambert block, modelling a Lambert arc. Given the initial and final position (and the time 

of flight, not included in the interface), computes the initial and final velocity. 
 
For some blocks, some variables on the interface may not be relevant for evaluating the 
block, and the action of the block has no effect on that variable, i.e. the value of that 
variable is the same before and after the block. In other words, these quantities are 
neither input nor output for the block, but they are on the interface. In this case, we say 
that the block is transparent for that variable. 
Let us consider for example a block which is modelling an (instantaneous) deep space 
manoeuvre. The aim of the block is to compute the magnitude of the DSM once the 
velocity before and after the deep space manoeuvre are known. This means that the 
velocity is an input on both the interfaces of the block. On the other hand, the block 
does not explicitly need the spacecraft position, and the position does not change before 
or after the block. This means that the block is transparent for the position, which is 
neither input nor output on the interfaces. The variable is represented in the figures as a 
dashed line connecting the two interfaces (Fig. 1.14). 

 
Fig. 1.14. The DSM block, computing a deep space manoeuvre. The block is transparent to variable r. 

 
When a block is transparent with respect to a variable, for example r in the case of block 
DSM represented in Fig. 1.14, then this variable can be either input or output on one 
interface of the block, but must be the opposite on the other interface, in order to 
guarantee the feasibility of the sequence, as shown in Fig. 1.15. 
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Fig. 1.15. Two possible feasible sequences of blocks. 

1.7.1 Application to the trajectory 

In order to model the entire trajectory using blocks, a set of blocks shall be created, 
together with their interfaces. The interfaces shall be consistent one another with their 
inputs and outputs, and allow to reproduce a trajectory. 

1.7.1.1 Interfaces 

Three types of interface are used: they are represented in Fig. 1.16. 

 
Fig. 1.16. The types of interfaces used to model a trajectory. 

 
Interface 0 has no variables, and it is used on a block which is a terminator of the 
trajectory or a starter for the trajectory. 
Interface 1 is used in the deep space flight, as in this phase the state of the spacecraft is 
considered to be fully characterised by its position and velocity vectors. 
Interface 2 is used when the spacecraft position is supposed to be the same as a planet 
position. This is the case of a swing-by, for example. Since the planet and the time are 
states, and thus known a priori, before evaluating any block, the position of the 
spacecraft can be computed through the ephemerides of that planet at that time. Thus 
there is no need to include the position vector in the interface. 

1.7.1.2 States 

The states, defined between each consecutive block in the temporal sequence, are 
different than the inputs and outputs, as all the states can be computed before evaluating 
any block. 
 

Table 1.1. States used to define a trajectory. 
State Description 
Time Epoch of the interface 

Previous planet Planet id of the last encountered planet 
Following planet Planet id of the next planet to be encountered 

Current planet Planet id, if the spacecraft is considered to be at a planet; 
0, if the spacecraft is in deep space flight.  
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1.7.1.3 Blocks 

Fig. 1.17 shows the basic blocks composing a trajectory. 
 

 
Fig. 1.17. Main blocks for modelling a trajectory. 

 
In principle, these blocks are enough for modelling all the phases and legs of the 
trajectory, according to both model 1 and 2. Even though, this approach highlights that 
some blocks cannot be consecutive in the trajectory: for example, two Lambert arcs 
cannot be put next to each other because, even if they have the same type of interface, 
they both have positions as an input and velocities as an output (Fig. 1.18). 
 

 
Fig. 1.18. Two Lambert arc blocks cannot match because of the inputs/outputs on their interface. 

 
To avoid this problem, some other blocks were introduced. 
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Brake. Fixes position (given by the planet ephemeris) before the block, and uses the velocity
before to compute the brake manoeuvre. The dv is an additional output. 

Unpowered swing-by. Given the incoming velocity, it computes the outgoing velocity. It
requires 2 additional parameters to determine the swing-by. 

Powered swing-by. It requires both the incoming and the outgoing velocity, and it allows a dv to
match the two legs. 

 
 

Unpow 
swingby 

v v 

rp   gamma 



 27

 
Fig. 1.19. Additional blocks for modelling a trajectory. 

 
So using these blocks, it is possible to connect 2 Lambert arcs as shown in Fig. 1.20. 

 
Fig. 1.20. Two Lambert arc blocks connected through a Fix position block and a DSM block. 

 
The input-output configuration on the interfaces of the Lambert arc block forces to add 
additional blocks to match 2 Lambert arcs. Basically a block which is fixing the position 
of the spacecraft (Fix position) and a block which is introducing a delta-v manoeuvre 
(DSM). This configuration makes sense from a physical point of view. In fact, two 
matching Lambert arcs require the matching point to be given, and in the same point 
there must be a discontinuity in the velocity vector. 

1.7.1.4 Feasibility, evaluability and evaluation order 

An ordered sequence of blocks is feasible if the interfaces of each couple of continuous 
blocks are of the same type, and each input parameter on one interface is an output in 
the other one, and vice versa. 
The feasibility of a given sequence does not guarantee that all its blocks can be 
evaluated. In general we can say that a feasible sequence of blocks is evaluable if it 
exists an order in which the blocks can be evaluated. This order will be called 
evaluation order, and it is often different than the temporal order of the blocks in the 
sequence. 
The constraint which forbids to evaluate the sequence of blocks in temporal order is the 
fact that a block needs all the input variables on both interfaces to be known, in order 
for the block to be evaluated. 
Let us consider as an example the interplanetary transfer modelled with the sequence of 
blocks in Fig. 1.21. This sequence is temporarily ordered, in the sense that the events 
represented by each block happen in time with the same order of the blocks in the 
sequence. The sequence is clearly feasible. 
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Fig. 1.21. Sections at which the states shall be defined. 

 
Now we can try to evaluate each block of the sequence, considering that the inputs shall 
be known, and the outputs will be available after the evaluation of each block. The 
Launch block can be evaluated first, as it has no inputs. Its evaluation makes r and v 
available at section 1. r and v at the same section are inputs for the Propagation block, 
which can in turn be computed, giving r and v at section 2. The following block, DSM, 
cannot be evaluated, as the input v at its right hand side (section 3) is unknown. Note 
that, as the DSM block is transparent with respect to r, the value of this variable is 
known also in section 3: it is the same as in section 2. The block Lambert cannot be 
evaluated either, but it is possible to evaluate Planet arrival. This completes Lambert 
inputs, which in turn completes DSM inputs. Following these criteria, it results that the 
a possible evaluation order of the sequence is: 
 

Launch, Propagation, Planet arrival, Lambert, DSM. 
 

The evaluation order can be represented graphically as in Fig. 1.22 considering to have 
an imaginary x axis of the computational time. 

 
Fig. 1.22. Blocks for the sequence in Fig. 1.21 positioned along a horizontal axis according to their 

evaluation order. 

1.7.2 Reproducing other models 

1.7.2.1 Model 1 

Model 1 can be reproduced using some of the blocks represented in Fig. 1.17 and Fig. 
1.19. The temporal sequence is represented in Fig. 1.23. 
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Fig. 1.23. Temporal sequence of blocks reproducing a trajectory according to model 1. 

 
The sequence is evaluable, and it is represented in evaluation order in Fig. 1.24. 
 

 
Fig. 1.24. Blocks for the sequence in Fig. 1.23 positioned according to their evaluation order. 

1.7.2.2 Model 2 

Model 2 can also be reproduced using the block approach. In particular, the deep space 
flight phase is represented in Fig. 1.25. The number of Lambert arc blocks in the phase 
is arbitrary. 
 

 
Fig. 1.25. Sequence for a deep space flight phase of model 2 

 
The sequence, regardless the number of Lambert arc blocks, can be evaluated in the 
order represented in Fig. 1.26. 
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Fig. 1.26. Blocks sorted according to the evaluation order for the deep space flight phase of model 2. 

 
The swing-by phase of model 2 is modelled using the powered swing-by block, which is 
between the Planet arrival block and the Planet departure blocks (Fig. 1.27). The 
Powered swing-by block can be evaluated when the following and the preceding deep 
space phases are computed. This reflects the same approach used in model 2. 
 

 
Fig. 1.27. Sequence for a the swing-by phase of model 2 
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PART 2 THE INCREMENTAL 
APPROACH 

2.1 Introduction 
This part deals with the incremental approach developed by the team at University of 
Glasgow. The incremental approach exploits the properties of trajectory model 1. The 
idea is to prune the solution space incrementally, by alternately adding a leg to the 
trajectory, and pruning the resulting solution space. 

2.2 The Incremental algorithm 
The generic ivΔ  in the Eq. (1.5) can be computed once the trajectory is completed up to 
leg i. This means that only the part of the solution vector x  concerning legs 1 to i is 
needed, and the value up to that point is independent of the variables associated to legs 

1i +  to LN . This allows splitting the problem into sub-problems, or levels: level 1 is 
taking into account the vΔ  associated with the launch from the departure planet and the 
flight to the second planet; each of the following levels takes into account a swing-by 
and the subsequent leg – including a DSM – to reach the next planet. Let us call ,L iD  the 
dimensional slice of the global domain D , such that it is composed only by the 
variables related to level i. For the model used here, the corresponding levels, variables 
and domains are listed in Table 2.1. Let us also define ,1

i
i L kk

D D
=

= ∏ , such that the 

trajectory up to level i is defined on the domain iD . 
 

Table 2.1: Levels and related variables. 
Level Variables Domain 

1 0t , θ , δ , 1α , 1T  ,1LD  

2 1γ , ,1pr , 2α , 2T  ,2LD  
… … … 
i 1iγ − , , 1p ir − , iα , iT  ,L iD  

 
Let us introduce a partial objective function, for each level, of the form: 
 ( ) ( ) ( )1 1 , , 1...i i i i i i i i Lf f D i Nφ− −= + ∈ =y y y y  (2.1) 

where ( )i iφ y  is a function (or local pruning criterion) that is specific to a given level i 
and is used to prune that level. For an MGA trajectory a partial function can simply be 
defined as follows: 
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( )

( )

0
1

, 1... 1

L

i

i i k L
k

N

f v v i N

f f
=

= + Δ = −

≡

∑y

x
 (2.2) 

In this particular case: 

 
( )

( )

1

1 1 0
1

i

i i k
k

i i i

f v v

vφ

−

− −
=

= + Δ

= Δ

∑y

y
 

but in the remainder of this part of the report it will be shown that the definition of a 
proper function ( )i iφ y  plays a very important role in the correct pruning of the solution 
space. 
It is important to stress that the function if  associated with level i depends only on the 
part of the solution vector related to the legs from 1 to i. Moreover, according to 
Bellman’s principle of optimality, if all the trajectory legs from 1 to i are optimal, if  is 
a lower bound for jf , when j i> , and for the whole objective function f . 

Furthermore we can say that, if *
if  is the optimal solution of a partial objective function 

( )i if y , and we define a threshold value *
i if f>  and a feasible set iD  such that: 

 ( ){ }:i i i i i iD D f f= ∈ <y y  (2.3) 

then we can prune out the portion of the solution space that do not belong to iD  and 
consider for level 1i +  the new solution space: 
 , 1i L iD D +×  (2.4) 

This process is called incremental pruning and if  is called pruning threshold for level i. 
What makes this approach interesting is that the evaluation of a partial objective 
function can be remarkably less expensive than the evaluation of the function f, and the 
associated search space is easier to explore. Thus it is possible to analyse level 1, using 

1f  on 1 ,1LD D≡ , and ideally remove (or prune) from the search space all the sets of 
values for which the partial objective function is above the threshold. The result is a 
pruned partial domain 1 1D D⊆ . Then the process continues with level 2, considering 

2f , on 1 ,2LD D× . Note that this partial domain has a smaller volume than 1 ,2LD D× , as 
there are sets of points in 1D  which have already been discarded during the pruning of 
level 1. The reduction in the search space at level i makes the search at level 1i +  more 
efficient. At the last level, the complete objective function f  is then minimised, on the 
remaining part of the search domain which was not pruned at previous levels, which is 

LND . 

Different approaches can be used to find the feasible set iD  at each level i. The 
proposed incremental algorithm aims, for each level i, at the identification of the basin 
of attraction of the low-laying local minima for each partial objective function if . 
Clearly, care must be taken in defining the different pruning thresholds. While keeping 
the thresholds too high will result on a light pruning with little improvements on the 
computational speed of the optimiser, lowering the threshold too much may result in 
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having the optimal solution left out of the search space. A block diagram of flux of the 
incremental algorithm is shown in Fig. 2.1. 
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Fig. 2.1. Diagram of flux of the incremental algorithm. 
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2.2.1 Back pruning 

In some cases, pruning the search space at level i is not possible since none of the 
criteria up to level i can be used to discriminate whether a region of the solution space 
should be pruned or not. In addition, some of the regions in the domain iD , which were 
considered feasible according to the partial objective function if , then become 
unfeasible when adding one or more levels. When this occurs, part of the domain iD  
can be further pruned once the partial objective function ,jf j i>  is computed at level j. 
Therefore, at each level, a back pruning procedure can used to further reduce the search 
space of the preceding levels. At level i, the algorithm optionally decompose the 
previous pruned domains into boxes with a smaller edge than the one used before, and 
some of the boxes are retained while others are discarded depending on the value of the 
partial objective at level i. 

2.3 Box Collection and Affine Transformation 
While the pruning process reduces the search space, the result is that the subsequent 
optimisation problem is not box-constrained: rather, the search domain becomes the 
union of all the boxes, on each level. This is clearly a disconnected domain. On the 
other hand, the optimiser, at the following level, has to be able to search only on those 
boxes, in order to take advantage of the pruning of the previous levels. Fig. 2.2 shows 
examples of disconnected and/or overlapped boxes for a 2-dimensional and a 3-
dimensional case. 
 

 
Fig. 2.2. Two examples of domains defined as a set of boxes. The boxes can be partially or completely 

overlapped. 
 
A possible solution is to collect all the boxes at each level and sample (or search) the 
collection instead of each single box individually. To this aim, a space transformation 
was applied, level by level, mapping all the disconnected boxes into a unit hypercube 
made of connected boxes. If level i is under pruning, then a transformed space is 
generated for each level k i≤ . 
The dimensionality of the transformed space is the same as the one of the original level 
space, so is the number of connected boxes in the unit hypercube. Each box in the real 
space has a corresponding one in the transformed space, and a linear transformation 
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allows mapping a point x  inside a box in the transformed space into a point x  in the 
corresponding box in the real space: 

 
( )
( ) ( ), ,

, ,
, ,

u j l j
j j l j u j

u j l j

b b
x x b b

b b

−
= − +

−
 (2.5) 

for each dimension j of the level under consideration. ,u lb b  are the upper and the lower 
bounds of the box in the unit hypercube which contains x , and ,u lb b  are the bounds of 
the corresponding box in the real space. 
Using this transformation of the search space, it is possible to run the search for feasible 
solutions on the unit hypercube, as schematised in Fig. 2.3. The affine transformation is 
biunivocal, thus it allows obtaining the point in the real space given a point in the unit 
hypercube, and evaluating the objective function in that point. In such a way, the 
optimisation problem becomes box constrained. In addition, only those parts of the 
search space which have not been pruned out are included in the search. 
In general, there exist infinite ways to partition the unit hypercube in a given number of 
boxes. Each of those may have different properties and drawbacks. In this work, two 
methods have been studied and used, each one trying to pursue a certain property. 
 

 
Fig. 2.3. On the left, steps for optimising on the affine space. On the right, the objective function wrapper 

used to optimise on the affine space. 
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2.3.1 Method 1 

The first method aims at partitioning the unit hyper-cube in a way that all the boxes are 
as similar as possible one another. In general, it is possible to partition a unit hyper-cube 
into boxes with equal edge length, being d  the number of dimensions of the level, and 
q  the number of boxes on that level, only if: 
 dt q=  
is an integer. t is the number of intervals to consider on each dimension to partition the 
affine space into q  hyper-cubes. In all the other cases, it is always possible to have 
identical boxes (for example cutting the hypercube along only one coordinate), but the 
number of subdivisions per coordinate would be uneven. 
A method has been developed to try to keep the boxes similar one another in 
dimensions, and at the same time, with similar edge length: 

 ( )
for ...1

    floor

    

j
j L

L
L

L

j

j

q

q

q
d

t

q
t

q ←
=

←

←

 

This pseudo-code is processing each dimension at a time, and determines jt , which is 
the number of subdivisions along the j-th dimension. Lq  is a variable to keep track of 
the number of remaining boxes to generate, once a dimension has been processed. At 
the end of the algorithm, if 0Lq ≠ , then the regular subdivisions could not generate all 
the required boxes, so further boxes (which will be different in size) are generated by 
halving existing boxes. 
Fig. 2.4 shows the partitioned unit hypercube, for a number of partitions from 1 to 12. 
The left-hand side of the figure is the case of a 2-dimensional space, while the right-
hand side is for a 3-dimensional space. The algorithm works in the same way for an 
arbitrary number of dimensions. 
 

 
Fig. 2.4. Partitioning of the unit hyper-cube for different numbers of partitions (from 1 to 12), and in the 

2D case and in the 3D case, using method 1. 
 
It is noteworthy that, in order to partition the unit hypercube with this algorithm, no 
information about the size of the boxes in the real space is required.  
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2.3.2 Method 2 

The second method for partitioning the unit hypercube aims at preserving the mutual 
proportions of the volume among the boxes. In this case, in addition to the number of 
boxes, it is needed to compute the volume of each box in the real space, relative to the 
total volume of all the boxes. Called the relative volume iV  for a generic box i, this 
must be actual volume of the corresponding box in the unit hypercube, as the total 
volume of the unit hypercube is unitary by definition. After having sorted the boxes by 
their volume, in decreasing order, it is possible to start an algorithm. Starting with one 
box (that is the unit hypercube itself), more boxes are generated by iterative bisection. 
 
The choice of maintaining the volume ratio was made to preserve the sampling 
probability of the original space ,L iD , when a uniform sampling is performed. Note that 
this algorithm is partitioning the unit hypercube maintaining the mutual proportions 
among the volumes, but not among the length of the edges. A 2-dimentional example is 
shown in Fig. 2.5. 
 

 
Fig. 2.5. An example of partitioning the unit hyper-cube using method 2. On the left, the real space; on 

the right, the affine space, partitioned accordingly. 
 

2.3.3 Discussion 

It should be noted that the objective function seen from the affine space is discontinuous 
even if it is continuous in the real space (Fig. 2.6). This strongly depends on how the 
boxes are connected in the affine space. However, if the boxes are disconnected or 
overlapped in the real space, the objective function in the affine space results to be 
always discontinuous. In addition the number of local minima in the affine space may 
be larger than in the real space. Although this might seem a pitfall, it should be noted 
that in practice a good deal of the minima in the affine space are replica of few minima 
in the real space. As a consequence there is an increased probability to find a good 
solution. 
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Fig. 2.6. On the left, a paraboloid defined on a set of boxes, and on the right, the corresponding function 

in the affine space. 
 

2.4 Searching for Partial Solutions  
As explained above, the pruning process requires the identification of a number of 
suitable regions of the solution space where optimal solutions are expected to exist. At 
each level of the incremental approach, these regions can be identified through different 
methods, in particular we used two conceptually different approaches:  

• Low-laying local minima approach. A number of local minima at each level is 
identified and a region of the solution space is carved around each of the 
minima.  

• Feasible set approach. A number of feasible points, according to a pruning 
criterion, are identified, clustered and enveloped into a region of the solution 
space. 

Both approaches were applied to the transformed space. For the former approach we 
used a multi-start algorithm while for the latter we used a global optimiser called EPIC. 

2.4.1 Multi-start algorithm 

This optimiser aims at finding low-laying local minima in the solution space. The search 
is performed by means of a multi-start algorithm: it generates, for each level of the 
problem, a uniform random sampling of the search space, and then for each point it 
starts a local optimisation, using the MATLAB® function fmincon. 
Once all the points have converged to a local minimum, only those below a given 
threshold are kept and considered. The threshold must be specified for each level, and it 
is of course related to the expected value of the partial objective function. 

2.4.2 EPIC 

EPIC is a hybrid algorithm that performs a systematic and automatic search space 
decomposition into subdomains and explore part of all the subdomains with a stochastic 
search. The stochastic search is performed by a number of virtual agents implementing a 
number of individualistic and social behaviours aiming at reaching either a feasible set 
or a number of local minima. For further details please refer to [24,25]. 
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2.5 Pruning Process 
The end result of both the approaches used to search for a partial solution, or a feasible 
set, is a number of points in the solution space. In order to proceed to prune the search 
space we need to identify a portion of it, containing the points, that is expected to 
envelope the global optimum. 
To this aim we need to defining some bounding boxes containing the points coming 
from the optimisation process at teach level. 
 
The solution points identified by either one of the optimisers could be low laying local 
minima or simply solution points below a given threshold (i.e. feasible points). By 
clustering these points in some way, it is possible to estimate a feasible region, 
assuming that if a point is feasible, then a region around that point shall be feasible as 
well. 
When pruning level i, the solutions are given in the space iD . The feasible sets are 
defined on each level of the space, so the solution vector is decomposed into levels and 
a feasible set is created for each level ,k k i≤ . So the function which is defining the 
feasible set is operating on a space ,L kD , using the part of solution vectors which are 
related with level k. 
Because of how the affine transformation works, the feasible set on each level must be 
defined as a set of boxes. In theory, a feasible set on a level can have any shape. It is 
also true that it is possible to approximate any region in an n-dimensional space with a 
collection of boxes, and a better approximation is obtained with smaller edges of the 
boxes. Three methods to define a feasible set have been studied through this work. 

2.5.1 Method 1 

For each solution point found by the optimiser, a box is built around the point, such that 
the point is in the middle, and its edges are parallel to the axes of the variables, and 
given the size of the edges of the box along each one of the variables of the level. 
This method builds a box around each one of the solutions found by the optimiser, 
without considering whether the solution points are close each other or not. As a 
consequence, if two solution points are close each other, or even coincident, the two 
corresponding boxes will be partially or even completely overlapped. 
If the solution point is close to the global bounds of the solution space, then the 
corresponding box is trimmed such not to go outside the bounds. All the boxes, except 
those near the bounds, have the same size. 
Fig. 2.7 represents an example of how this method works, in the case of a level with 
only 2 dimensions. The red starts represent the solutions found by the optimiser. The 
blue squares are the 2-dimensional boxes which have been created around the solutions, 
and their union is the feasible set defined with this method. The boxes have been filled 
with semi-transparent blue colour, such that a darker colour corresponds to an area in 
which several boxes are overlapped. From the same figure it is also possible to notice 
some boxes near the bounds of the search space that have been trimmed, and the thus 
solution is not in their middle point. 
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Fig. 2.7. Definition of the boxes identifying the feasible set according to method 1. Red stars represent the 

optimal solutions, and the blue boxes the feasible set. 
 
The main idea behind this method is that the global minimum of the complete problem 
should not be too far from one of the low-laying local minima at each level. In 
particular, the minimum of the global problem must be close enough to the local 
minimum such that the corresponding box is including it, and thus it is not pruned out 
from the solution space. 
The fact that some boxes are overlapped results in multiple copies of the same part of 
the solution space into the affine space, once the transformation is done. So the number 
of local minima in the affine space may be larger than in the real space. Although this 
might seem a pitfall, it should be noted that in practice a good deal of the minima in the 
affine space are replica of few minima in the real space. As a consequence there is an 
increased probability to find a good solution. 
A drawback of this method is that the number of boxes is equal to the number of 
solutions given by the optimiser, and thus can be very high, if an exhaustive search of 
the solution space has been required. A high number of boxes in each level reflects in a 
high number of partitions of the corresponding affine space, and so a highly 
discontinuous function. 

2.5.2 Method 2 

A different approach was followed to develop method 2. In this case, the level domain 
is ideally subdivided with an orthogonal, uniformly spaced grid. The grid divides the 
space into boxes. The thickness of the grid, along each dimension of the level, must be 
specified, and it corresponds to the size of the edge of all the boxes along that 
dimension. 
Once the imaginary grid has been defined, the solution points are introduced, and, for 
each one of those, the box containing the solution is considered from the ones defined 
by the ideal grid (Fig. 2.8). 
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Fig. 2.8. Definition of the boxes identifying the feasible set according to method 1. Red stars represent the 

optimal solutions, and the blue boxes the feasible set. 
 
With this method, the boxes can either be perfectly overlapped (i.e. coincident), or 
consecutive, or disjoined. It is not possible to have partially overlapped boxes. All the 
boxes have also the same size. As in method 1, the number of boxes is equal to the 
number of solutions. On the other hand, the fact that the boxes are aligned on a grid 
makes the affine space slightly smoother, especially in the case in which consecutive 
boxes in the real space are transformed into consecutive boxes in the affine space. 

2.5.3 Method 3 

Method 3 is an evolution of method 2, and tries to fix its flaws. 
The boxes are generated in three steps: 

• the first step is analogous to what has been done in method 2: the level domain is 
divided into a number of hyper-rectangles, by means of an ideal grid, given the 
spacing of the grid along each axis; 

• then, all the boxes of the grid which do not contain any solution are discarded, 
while all the boxes containing at least one solution are saved. 

• lastly, all the consecutive boxes are collected together and a wrapping box is built 
for each one of the collections. This time the box is the smallest box, with edges 
parallel to the axes, which is wrapping the collection of consecutive boxes. 

Fig. 2.9 shows two steps of the box generation with method 3 in a 2-dimensional level 
domain, while Fig. 2.10 shows the same thing for a 3-dimensional level domain. On the 
left-hand side of the figures, the red stars are the low-laying solutions identified by the 
optimiser; the blue boxes are those chosen from the ideal grid, because they contain at 
least one of the solutions. At this point, all the consecutive boxes are collected together, 
and the right-hand side of the figures shows the resulting boxes, after the last step. 
These boxes will be used as the feasible set. 
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Fig. 2.9. The two steps of generating the feasible set according to method 3. Red stars represent the 

optimal solutions, the blue boxes are surrounding all the solutions, and finally the green boxes are the 
feasible set. 2D case. 

 

 
Fig. 2.10. As in Fig. 2.9, for a 3D case. 

 
The aim of the last step is twofold: by collecting several boxes, and creating only one 
from them, it reduces the number of the boxes; furthermore, it envelopes in one box the 
regions in which there are many local minima close one another, preserving the local 
and adjacent structures of the solution space. In fact, the affine transformation maps a 
box in the real space into another box in the affine space, thus maintaining the shape 
and the structures of the objective function inside the box. By adopting this method, the 
boxes don’t have the same size, and their number is different than the number of 
solutions points. More specifically, the number of boxes is most likely to be smaller 
than the number of solution points, because: 

• If two solution points result to be in the same box on the grid, only one box is 
considered. 

• The box collection is likely to further reduce the number of boxes. 

2.6 Discussion 
Before proceeding to the next section, it is worthwhile to examine some of the 
characteristics of the proposed incremental approach. 
One key assumption of the incremental approach is that a complete solution to the MGA 
problem, i.e. a complete trajectory, can be built by adding individual trajectory legs, 
starting from departure to the arrival or vice versa. Therefore, although the global 
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minimum of each sub-problem does not represent the global minimum of the whole 
problem, we can build the solution space of the whole problem by incrementally adding 
up the search spaces associated to each sub-problem in such a way that the resulting 
total search space contains the global minimum.  
As will be shown in the following, the objective functions that are used to prune the 
search space associated to each sub-problem do not directly depend on the chosen 
objective function for the whole problem. Therefore, the incremental approach is 
independent of the objective function of the whole problem, but is strongly dependent 
on the characteristics of the trajectory model. 
In particular, for the trajectory model presented in this part of the report, the partial 
objective function (and pruning criterion) associated to each sub-problem cannot be 
evaluated without considering all the previous levels. This represents a fundamental 
difference with respect to what done in [1]. In fact, a trajectory model in which gravity 
manoeuvres are modelled as powered swing-bys does not need to build the whole 
solution incrementally (or as a cascade of sub-problems) but each sub-problem can be 
tackled in parallel with the others. Furthermore, in the proposed incremental approach, 
the search space is built up incrementally, therefore the number of dimensions of each 
sub-problem increases as a new level is added to the list. On the other hand, the number 
of dimensions of each sub-problem in [1] remains constant throughout the whole 
pruning process. 

2.7 Incremental Trajectory Planning 
This model requires a pre processing to build a problem which can be solved with the 
incremental approach, with an analogous algorithm as the one discussed in 1.7. 
Let us say that we would like an interplanetary transfer between two given planets. By 
adopting the block model, not only is the choice of planetary swing-bys free, but also 
the way of modelling each phase. 

2.7.1 Swing-by sequence definition 

A multiple swing-by trajectory, defined using a certain model, is fully characterised 
given the sequence of planetary swing-bys and a set of other parameters defining the 
timing and other quantities depending on the model itself. In particular, the choice and 
the order of planets to swing-by are of great importance, as they change the trajectory 
completely (and thus strongly affect its characteristics, in particular the delta-v). 
It follows that a proper selection of the planetary swing-bys is essential, and shall be 
done before optimising all the other continuous parameters of the trajectory. 
Furthermore, tackling the selection of a sequence with a standard optimisation approach 
is tricky, due to the discrete nature of the variables involved, and to the fact that, once a 
sequence is chosen, a global optimisation has to be performed in order to assess whether 
the sequence is promising or not. In addition, the number of different possible 
sequences of planetary swing-bys for an interplanetary transfer can be very high, which 
forbids to find an optimal trajectory for each one of them. 
 
A simplified transfer model can be introduced, in order to allow having a very quick 
assessment of all the possible sequences. If the simplified model is conservative, which 
means that it gives an optimistic evaluation of each trajectory, it is possible to discard 
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all the sequences which do not satisfy certain requirements (or are not feasible at all) in 
a very short time, without the possibility of discarding promising ones. After this step, 
the complete model can be used to study the remaining sequences. 
 
The departure body and the target body shall be given. The list of possible swing-by 
sequences is built adding one planet at a time, and then evaluating the feasibility of the 
sequence using the reduced model. If the sequence is feasible, then the process repeats 
adding more bodies and checking feasibility, until the target body is reached. At that 
point, the sequence is considered complete. The algorithm for building the list of 
possible sequences can be summarised in the following way: 

• Initialise the list of feasible sequences A with a single sequence containing only 
the departure body 

• Initialise the list of new sequences B to empty 
• Initialise the list of complete and feasible sequences C to empty 
• While list A is not empty, do: 

o For each sequence in list A, do: 
� For all the available bodies for swing-by (and the arrival body), 

do: 
• Add the body to the sequence 
• Check the feasibility 
• If the sequence is feasible, then: 

o If the sequence is incomplete, save it into list B 
o Otherwise, save it into list C 

o Copy list B in list A, then empty list B 
The algorithm finishes when there are no more incomplete, feasible sequences. At the 
end, all the complete, feasible sequences are collected in list C. 
Feasibility of each sequence is assessed using a reduced trajectory model, similar to 
what proposed in [2]. In particular, the following assumptions were adopted: 

• Orbits of all the bodies at which swing-by can be performed, and the spacecraft 
departure body, are considered circular; 

• All the orbits and transfers are considered to lie in the same plane (planar system); 
• No phasing is taken into account: a swing-by or rendezvous is possible every time 

the orbit of the spacecraft intercepts the orbit of the body; 
• All the swing-bys are performed with the lowest radius of pericentre allowed for 

the corresponding body, such to achieve the maximum rotation of the relative 
velocity vector; 

• No overturning of the outgoing heliocentric velocity vector after swing-by is 
allowed. This means that, if the rotation of the incoming relative velocity vector 
leads to an outgoing relative velocity vector which is on the other semi-plane with 
respect to the planet velocity, then the rotation which gives the maximum 
acceleration or deceleration of the spacecraft in the heliocentric reference is 
considered; 

• No other propelled manoeuvres are considered, other than the launch. Swing-bys 
are responsible for changing the heliocentric energy of the spacecraft. 

Given this framework, and a sequence which has to be assessed, the reduced trajectory 
model is exploited in the following way. The spacecraft is supposed to be at the 
departure body (so on a circular orbit). The time of launch is not influent, as the body’s 
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orbits are circular and no phasing is considered. The launch is assumed to be tangential 
(to have the maximum or minimum variation of semi-major axis). The launch is on the 
same verse of the velocity of the planet if the next planet in the sequence has a bigger 
radius, otherwise is on the opposite verse. The orbit after launch is subsequently 
computed: if this orbit intercepts the second body in the sequence, then a swing-by can 
be performed. Assuming that the planet is in the correct position regardless the arrival 
time, the incoming relative velocity is computed. Given that the swing-by is performed 
with the lowest radius of pericentre possible (maximum deviation), but no overturning 
is allowed, there are two possible outgoing heliocentric velocities: one is higher 
(positive turning of velocity vector) and the other one is lower (negative turning) than 
the incoming velocity. Since a swing-by has to be chosen, the same choice proposed by 
Petropoulos et al. [2] is followed here: if the orbit of the next different planet in the 
sequence has a bigger semi-major axis, then the positive turning is chosen, otherwise 
the negative turning is considered. The new orbit after the swing-by is computed and the 
algorithm continues looking for the intersection with the following body of the 
sequence. If the swing-bys allow the spacecraft to reach the last planet in the sequence, 
then we say that the sequence is energetically feasible. 
This criterion allows to discard some sequences, but the list of possible sequences might 
still be very big, especially due to some trivial choices: for example, those containing 
too many resonant swing-bys of the same planet, or those containing swing-bys of 
farther planets, which, although energetically feasible, can increase the transfer time too 
much. 
So a set of heuristic rules shall be introduced, to make infeasible some sequences, even 
before the evaluation with the reduced model. 
In this work, the following rules were applied: 

• The number of resonant swing-bys is limited. 
• If the target body’s orbit has a bigger radius than the departure’s one, then the 

number of transfer legs going inwards is limited. In the same way, if the target 
body’s orbit has a smaller radius than the departure’s one, then the number of 
transfer legs going outwards is limited. 

• If the target body’s orbit has a bigger radius than the departure’s one, then an 
inward transfer is possible only between two bodies whose orbits are consecutive 
in the list sorted by radius. For example, in an Earth-Saturn transfer in the solar 
system, an Earth-Mercury leg would make the sequence unfeasible, while an 
Earth-Venus leg is admitted. Equivalently, if the target body’s orbit has a smaller 
radius than the departure’s one, then an outward transfer is possible only between 
two bodies whose orbits are consecutive in the list sorted by radius. 

• If the target body’s orbit has a bigger radius than the departure’s one, then no 
body with radius bigger than the target one is allowed in the sequence. This is 
because if it is possible to reach an orbit whose radius is bigger than the target, 
then it is possible to reach the target, too. Equivalently, if the target body’s orbit 
has a smaller radius than the departure’s one, then no body with a radius smaller 
than target’s is allowed. 
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2.7.1.1 Preliminary results 

The method was tested on a multiple gravity assist transfer from Earth to Saturn. Up to 
2 resonant swing-bys were allowed in each sequence and 1 inward transfer was 
admitted. The resulting list of feasible sequences is given in Table 2.2. 
 
Table 2.2. Feasible sequences for an Earth-Saturn transfer, according to energetic feasibility and heuristic 

rules. 
1 E V E E M S   
2 E V E E E M S  
3 E V E E M M S  
4 E V E M M M S  
5 E E V E E M S  
6 E V E E J S   
7 E V E E E J S  
8 E V E E J J S  
9 E E V E E J S  
10 E V E E M J S  
11 E V E M M J S  
12 E V E E E M J S
13 E V E E M M J S
14 E V E E M J J S
15 E V E M M M J S
16 E V E M M J J S
17 E E V E E M J S
18 E E V E M M J S
19 E M E M M M J S

 
The time needed to compute this list is about 1 second, using MATLAB on a Pentium 3 
Ghz computer. It is important to highline that, in the case that only the heuristic rules 
are applied, there are 249 possible sequences. The energetic feasibility criterion reduces 
this number to only 19, in a reasonably short time. It is also noticeable that sequence 7 
in Table 2.2 is part of the sequence that Jet Propulsion Laboratory selected for the 1st 
Global Trajectory Optimization Competition, resulting to be the best one. The objective 
in that case was to reach the asteroid 2001 TW229. 

2.7.2 Block sequence definition 

At this point, we will assume that the planetary sequence is given. The sequence can be 
the result of a higher-level discrete optimisation, or some heuristics, or previous 
experience. 
We will also assume that a sequence of main blocks (taken from those in Fig. 1.17) 
generating the trajectory is also given. The sequence shall be consistent with the 
sequence of planets, that is the number of swing-by blocks (either powered or 
unpowered) shall be the same of the number of planets to swing-by. The so created 
sequence of blocks is likely to be unfeasible, like in Fig. 2.11. 
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Fig. 2.11. An example of trajectory composed using different blocks, which is unfeasible because of 

conflicting interfaces between consecutive blocks. 
 

2.7.3 Sequence completion 

The unfeasible sequence of main blocks is processed and, with the help of some 
heuristics, additional blocks (those in Fig. 1.19) are added, in order to make the 
sequence feasible (and evaluable). Table 2.3 shows some of the heuristic rules used to 
make a given sequence feasible, by inserting additional blocks.  
 

Table 2.3. Some heuristics to make feasible an unfeasible sequence of blocks. 
Unfeasible sequence Feasible sequence 

Lambert, Lambert Lambert, DSM, Fix position, Lambert 
Propagation, Lambert Propagation, DSM, Lambert 
Lambert, Powered swing-by Lambert, Planet arrival, Powered swing-by 
Lambert, Unpowered swing-by Lambert, Planet arrival, Unpowered swing-by 
 

2.7.4 Feasibility and evaluability (evaluation order) 

After applying all the available heuristics to make the sequence feasible, the feasibility 
is checked. It may result that the sequence is still not feasible, because of some errors in 
the input sequence. For example, if 2 consecutive swing-by blocks (of any kind) are 
consecutive, that sequence will remain unfeasible, because there is no way to make the 
sequence feasible by inserting any of the additional blocks from Fig. 1.19. From a 
physical point of view, this unfeasibility reflects the fact that it makes no sense to have 
two swing-by phases without any deep space flight in between. 
If the trajectory is feasible, then its evaluability is assessed and the evaluation order is 
computed. 

2.7.5 Parameters 

Once the planetary sequence and the block sequence are given, solution vector for 
characterising the trajectory is composed by: 

• Initial time; 
• A time value (duration) for each block which has variable duration. 
• All the parameters of all the blocks composing the trajectory; 

2.7.6 Incremental approach 

After computing the evaluation order, the problem can be split into levels, to 
incrementally prune it. 
The concept of creating an incremental approach is the same as explained before. 
Basically, to prune the search space at a certain level, there is need of a partial objective 
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function. This will be an indicator, relative to the part of the trajectory which has been 
computed up to the level under pruning. 
Since the trajectory is now composed by blocks, it makes no sense to split the trajectory 
into levels considering a swing-by and deep space flight phase for each level, as done in 
2.2. A rather different approach is followed here, such that an incremental problem can 
be built regardless the particular sequence of blocks it has been created for describing 
the trajectory. 
The order of computing the blocks is given by the evaluation order. Each time a block is 
evaluated, all the variables at both its interfaces are determined. In addition, the block 
can give a parameter of merit. This is used to assess the partial trajectory and to prune 
the search space. In other words, it is possible to split the problem into levels according 
to the availability of the parameter of merit in the sequence in evaluation order. 
Level i is composed by the blocks from 1 to the i-th block with a parameter of merit, 
considering the sequence in the evaluation order. At level i, the i parameters of merit 
can be used to create a partial objective function and prune the search space. 
Note that this approach is very general, and can be extended to any possible sequence of 
blocks, regardless if they represent a trajectory or any sequence of actions, under the 
conditions that the assumptions on the sequence are the same. 
 
The solution vector to characterise the trajectory up to level i, is composed by all the 
variables needed for evaluating all the blocks, from the first to the block with the i-th 
parameter of merit, in the evaluation order sequence. If the blocks are evaluated 
following the evaluation order, the inputs are available to the block being evaluated. 
What is needed are then the parameters for the same blocks, and the states before and 
after each block being evaluated. 
The states before and after each block in the level shall be computed. Note that in order 
to compute the states before and after a block, it might be necessary to define the states 
at all the sections preceding it in the temporal sequence. This is particularly true for the 
time state, in the case of the trajectory. 
As an example, let us consider again the fragment of trajectory according to model 1, 
shown in Fig. 1.21. The same figure shows the sections at which the states are 
computed. The evaluation order for that sequence is represented in Fig. 2.12, as well as 
the sections at which the states are defined. 
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Fig. 2.12. Blocks for sequence in Fig. 1.21 in evaluation order. 

 
To evaluate the Planet arrival block, states at section 4 and 5 are required. These 
sections, in a temporal sequence, follow the blocks Lambert and DSM, which will be 
computed afterwards. 
If some states are computed from the solution vector (i.e., the time), then the variables 
of the solution vector needed to compute the states have to be included in the level, even 
if they are referred to blocks not included in the level. 
Summarising, it is possible to state that the solution vector of each level is composed 
by: 

• All the variables needed to compute the states up the last section in the level; 
• All the parameters of the blocks in the level. 

In the case of the trajectory, this results in: 
• Initial time; 
• A time value (duration) for each block which has variable duration, and that is in 

the level and before any block in the level in the temporal sequence; 
• The parameters for all the blocks in the level. 

In conclusion, for level i, given a subset of the solution vector, the set of blocks of the 
level can be evaluated, following the evaluation order. As a result, i parameters of merit 
are obtained. The parameter of merit of the blocks DSM and powered swing-by is the 

vΔ , so a partial objective function can be constructed by summing all the parameters of 
merit. The incremental problem is then fully determined, and can be solved with the 
tools developed in 1.7. 

2.8 Results 
The incremental approach was tested on a number of problems of increasing complexity 
with single and multiple gravity assist manoeuvres. In particular, in the following, we 
report the results obtained for: 

• Earth-Venus-Mars (EVM) transfer  
• Earth-Earth-Mars (EVM) transfer with two different testing procedures 
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• Earth-Earth-Venus-Venus-Mercury (EEVVMe) transfer 
• Earth-Venus-Venus-Mercury-Mercury (EVVMeMe) transfer 

 
Despite the simplicity of the first two test cases they are representative of two classes of 
MGA transfers and well illustrate the complexity of these kinds of problems.  
The incremental approach was compared to the direct solution of the whole problem 
(all-at-once approach) with five different global optimization methods, two 
deterministic and three stochastic. The two deterministic optimisers are DIRECT 
(Divided Rectangles, [3]) and MCS (Multilevel Coordinate Search, [4]). The stochastic 
optimisers are DEVEC, an implementation of Differential Evolution [5], PSO, an 
implementation of Particle Swarm Optimization [6], and a simple multi-start, which 
takes a suitable number of samples in the search space and optimizes the best one 
locally by using Matlab® fmincon. The optimisers were applied with different settings 
and with an increasing number of function evaluations. In the following, the optimisers 
are tested for 20000, 40000 and 80000 function evaluations. 
 
The first three test cases make use of the low-laying minima approach while the last 
case uses the feasible set approach. For the first three cases, therefore, the incremental 
approach uses at each level a random sampling of the solution space with Latin 
Hypercube, and then runs a local optimization from each sample. The local search is 
performed by using fmincon. In both test cases the whole problem is decomposed into 
two levels. After a set of minima for level 1 is found and a set of boxes is generated, the 
affine transformation is applied to the subspace at level 1 and the incremental approach 
proceeds by adding the second level.  

2.8.1 EVM transfer 

The first test case consists of a transfer from the Earth to Mars exploiting a swing-by of 
Venus. For this test, a simpler version of the trajectory model was used, with no DSM 
along the Earth-Venus transfer leg. Therefore the problem has dimension 6 and the 
bounds of the search space are reported in Table 2.4.  
 

Table 2.4. Bounds for the EVM test case 
 LB UB Level 

0t  [d, MJD2000] 3650 
9128.75 
(3650 + 

15 years) 
1T  [d] 50 400 

1 

1γ  [rad] π−  π  

,1pr  [planet radii] 1 5 

2α  0 1 

2T  [d] 50 700 

2 

 
Level 1 computes the first deep space flight phase, while the second adds the swing-by 
of Venus and the deep space flight to Mars. The objective function f is the total vΔ , 
which is the sum of the relative velocity at departure and the DSM between Venus and 
Mars. The problem was initially analyzed by running a multi-start on the whole domain. 
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A local search was started from a total of 500 starting points, taken with Latin 
Hypercube, and the 10 best solutions are shown in Table 2.5. The total number of 
function evaluations needed to compute all the solutions was 494233. The trajectory 
corresponding to the best solution is shown in Fig. 2.14a. 
The three stochastic global optimisers mentioned above were run on the whole problem 
for 200 consecutive times. In Table 2.6 it has been reported the percentage of times the 
stochastic optimiser finds a solution proximal to solution 1 in Table 2.5. In addition we 
report the percentage of times the stochastic optimisers find a solution that is better than 
the deterministic ones. The key point in the proposed incremental approach is not only 
to reduce the computational cost but also to increase robustness, i.e. increase the 
probability to find the global minimum. 
The incremental approach starts at level 1 by looking for all local minima for the 
objective function  which is the departure relative velocity at the Earth. A local search 
was started from a total of 20 random starting points and an equal number of boxes were 
generated. Fig. 2.13 shows the contour plot of the search space at level 1. The boxes 
which have been generated by the algorithm are highlighted in dark grey, in semi-
transparency. The size of the boxes is arbitrary and was set to a percentage of each 
dimension. 
 

Table 2.5. The 10 best solutions found with the all-at-once approach for the EVM problem 

Sol. vΔ  
[km/s] 

0t  
[d, 

MJD2000] 
1T  [d] 1γ  [rad] ,1pr  

[radii] 2α  2T  [d] 

1 2.9818 4472.013 172.2893 2.9784 1 0.5094 697.61 
2 2.983 4473.775 170.5335 2.9859 1.0005 0.8611 698.1473 
3 2.9962 4475.217 171.1191 2.853 1.076 0.7292 692.8782 
4 3.0393 4480.19 167.5824 2.8044 1.1307 0.6371 692.5669 
5 3.1707 4482.079 174.6522 -2.8195 1.1885 0.4608 629.9262 
6 3.1708 4482.145 174.6048 -2.822 1.2033 0.4923 629.7778 
7 3.1719 4481.964 174.7837 -2.8076 1.106 0.6224 630.7661 
8 3.1884 4471.355 171.4453 -3.1416 1.019 0.5334 700 
9 3.2217 3872.306 105.6978 2.7087 1 0.545 628.0203 

10 3.2536 3872.891 104.6827 2.6838 1 0.8006 627.2178 
 

Table 2.6. Solutions and performances of different optimisers on the EVM transfer 

Solver 20000 
evaluations 

40000 
evaluations 

80000 
evaluations 

DIRECT [km/s] 4.3760 4.3730 4.3730 
MCS [km/s] 6.7390 5.5240 5.4080 

DEVEC, 200 runs 
< 3 km/s 6.5% 5.0% 7.0% 

< DIRECT 99.5% 99.5% 99.5% 
< MCS 100.0% 100.0% 100.0% 

Multi-start, 200 runs 
< 3 km/s 2.5% 3.0% 3.0% 

< DIRECT 97.0% 99.0% 98.5% 
< MCS 100.0% 100.0% 100.0% 

PSO, 200 runs 
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< 3 km/s 2.0% 2.5% 7.5% 
< DIRECT 71.5% 73.0% 78.5% 

< MCS 100.0% 96.0% 93.0% 
 
The multi-start search of the incremental algorithm was able to identify almost one local 
minimum for each sinodic period. The number of evaluations to find all the 20 boxes 
was 516. After applying the affine transformation to level 1 and adding level 2, the 
whole reduced space was sampled with other 20 random starting points, and a local 
search was run from each one of them for a total of 8827 function evaluations. The 
result was that: 

• 90% of the 20 best solutions found with the all-at-once approach have the values 
of level 1 variables included in one of the boxes; 

• The best solution found with the incremental approach is the same as the best 
known solution, i.e. solution 1 in Table 2.5. 

In addition, the incremental search has been run twenty consecutive times, obtaining 
always the same result and the same global minimum. Fig. 2.14 is a representation of 
the solution for this case. 
 

 
Fig. 2.13. Boxes found after analyzing level 1. The space outside the boxes is pruned. The background 

gives an idea of the distribution of the local minima 
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Fig. 2.14. Projection on the ecliptic plane of solution 1 of the EVM test case. 

 

2.8.2 EEM Transfer 

This single gravity assist test case consists of an Earth-Earth-Mars transfer. Although it 
is quite simple, the aim of this test is twofold: it demonstrates the effectiveness of the 
incremental approach, and it is useful to define a particular class of problem-dependent 
functions ( )i iφ y . 
The Earth gravity assist is used to increase the kinetic energy of the spacecraft with 
respect to the Sun when the launch capabilities are limited. In order to gain the required 

vΔ , the spacecraft has to reach the Earth with a relative velocity vector different from 
the one at departure. This is achieved with the DSM along the Earth-Earth transfer leg. 
Thus, the optimal design of the first leg is essential in order to exploit the encounter of 
the Earth properly, and gain the energy to reach Mars. 
The departure velocity vector depends on the launch capabilities, therefore its modulus 
was set at 2 km/s for this test case, while the non-dimensional declination δ  and right 
ascension θ  were left free. Being 0v  constant, the solution vector has only 5 decision 
variables on level 1, and 0v  can also be removed from all the objective functions 
without loss of generality. Table 2.7 presents the bounds for the variables of the 
problem. The global objective function f is the sum of the vΔ  of the two deep space 
manoeuvres, plus the fvΔ  needed to inject the spacecraft into an ideal operative orbit 
around Mars with 3950 km of pericentre radius and 0.98 of eccentricity. 
 

Table 2.7. Bounds for the E-E-M test case. 
 Lower bound Upper bound Level 

0t  [d, MJD2000] 3650 9128.75 
(3650 + 15 years) 

θ  0 1 
δ  0 1 

1α  0.01 0.99 

1 
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1T  [d] 50 1000  

1γ  [rad] π−  π  

,1pr [planet radii] 1 5 

2α  0.01 0.99 

2T  [d] 50 1000 

2 

 
In the incremental approach, the whole problem is decomposed into two levels: level 1 
consists of the Earth-Earth transfer, while level 2 computes the Earth swing-by and the 
Earth-Mars transfer leg. 
The choice of the partial objective function 1f  for the incremental approach at level 1 is 
tricky. In fact the cheapest way to perform an Earth-Earth transfer is to move from the 
Earth orbit as little as possible (or not move at all). Therefore, if the sum of the DSM 
and 0v  is chosen as objective to minimise, the optimiser returns solutions with no 
manoeuvre. These solutions, though, arrive at Earth with a relative velocity that is not 
suitable to exploit the swing-by properly. Furthermore, it is known from the physics of 
the problem that the zero-manoeuvre solution is a local minimiser even for the whole 
EEM transfer. Since the gravity assist manoeuvre requires an accurate timing to reach 
the swing-by planet with the right incoming conditions, its effect is to narrow down the 
basin of attraction of each minima. In fact, a gravity assist manoeuvre is more sensitive 
to a small variation of the variables than a direct transfer. Consequently the gradient of 
the objective function in a neighbourhood of the local minima is higher and the basin of 
attraction is expected to be narrower. Now a zero-manoeuvre solution for the E-E leg 
physically corresponds simply to a delayed departure from Earth, with no gravity assist. 
All the zero-manoeuvre solutions, therefore, have a much wider basin of attraction. This 
can be easily verified by applying a general stochastic global optimiser to the whole E-
E-M problem. The optimiser will return with a higher probability the zero-manoeuvre 
solutions if no special condition is imposed on the departure velocity at the Earth. 
In order to minimize the vΔ  on the E-M leg, the incoming velocity vector at the Earth 
should be as such to have an outgoing relative velocity vector aligned with the velocity 
vector of the Earth (maximum increase in the kinetic energy). 
A suitable criterion to optimise the first leg can be found by studying the characteristics 
of the relative velocity vector at the end of the Earth-Earth transfer. Fig. 2.15 represents 
the in-plane components (radial rv  and transversal vθ ) of the normalised incoming 
relative velocity vector for the best solutions found minimising the total E-E-M vΔ  
with the all-at-once approach. On the same plot the objective function for the complete 
problem is also represented. 
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Fig. 2.15. Normalized in-plane components of the incoming relative velocity vector before the Earth 

swing-by, for the best solutions found, and corresponding objective value. 
 
For the best solutions (from 1 to about 300), the direction of the relative velocity is 
almost completely radial. Therefore, the following partial objective function was chosen 
for all the levels in which there is a resonant leg: 

 
2 2

2
1

i
h

i k
kr

v vf v
v

θβ
=

+
= + Δ∑  (2.6) 

This function tries to minimise the DSM while maximising the radial component rv  of 
the relative velocity before the subsequent swing-by, with respect to the other 
components , hv vθ . β  was set to 1 km/s. Although this criterion was derived for a 
specific case, it has general validity and applies to two classes of MGA transfers: 
aphelion rising gravity manoeuvres and perihelion lowering gravity manoeuvres. 
Given the partial objective function in Eq. (2.6), the incremental algorithm was run with 
30 randomly distributed starting points for level 1 and 20 for level 2. The threshold for 

1f  at level 1 has been set to 0.5 km/s. The size of the boxes at level 1 for each variable 
was set to the values represented in Table 2.8. 
 

Table 2.8. Box size for the E-E-M test case. 
Level under 

pruning 
Box edges at 

level 1 

1 

5478.75 d 
0.1429 
0.1429 
0.2967 
95 d 

 
The length of the edges along all the dimensions is a fraction of the whole search space, 
except for the edge along direction 0t , which spans the entire range. The reason is that 
the orbit of the Earth is almost circular: therefore a different position along its orbit has 
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little influence on the arrival conditions at the end of the Earth-Earth leg. Thus, it is not 
possible to prune along 0t  at level 1, i.e. in the E-E leg. 
The result of the pruning of level 1 is shown in Fig. 2.16 to Fig. 2.18, which represent 
the projection of the boxes along variables of level 1. The red stars represent the 
solutions found by the incremental search engine at level 1. All the search space which 
is not included in one of the boxes is pruned out, and not considered during the search at 
the following level. 
 

3000 4000 5000 6000 7000 8000 9000 10000
t0, d, MJD2000

t0 at Level 1

 
Fig. 2.16: Projection on 0t  of boxes and solutions after pruning level 1. 

 
 

 
Fig. 2.17: Projection on ,θ δ  of boxes and solutions after pruning level 1. 
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Fig. 2.18: Projection on 1 1,Tα  of boxes and solutions after pruning level 1. 

 
The fact that 0t  is not relevant is clear from Fig. 2.16, as the solutions are spread along 
the whole time span. Instead, the pruning process reduces the search space along the 
other variables considerably, in particular θ , δ  and 1T . Fig. 2.17 reveals that all the 
solutions have the non-dimensional declination δ  at 0.5, which means that the launch 
must be in the Earth orbit plane, and non-dimensional declination θ  equal to 0, 0.5, or 
1: these values correspond to a launch excess velocity aligned with Earth orbital 
velocity (with the same or the opposite direction). Considering the time of flight 1T , 
there are 4 classes of solutions, around 365 d, 510 d, 720 d and 900 d. These local 
minima have been clustered in 3 boxes, as seen in Fig. 2.18. 
The following step of the incremental algorithm is the process of level 2. Since level 2 
is the last one in this problem, its pruning is not necessary. All the solutions found by 
the multi-start are sorted and the best one is considered the best global minimum. The 
search for the solutions at level 2 takes advantage of the pruning at level 1, and exploits 
the space transformation. 
The smallest vΔ  found by the incremental approach, averaged on the 20 runs, is shown 
in Table 2.9, together with the same value obtained by running the DE and the multi-
start on the complete problem all-at-once. The number of objective function evaluations 
is also shown, as a parameter of the computational power required to obtain a certain 
objective value, and thus as an index of the performance of the optimiser. For the 
incremental approach, the number of function evaluations for each level is shown. The 
standard deviation of the best-found objective value on the 20 runs is also shown. 
The result is that the incremental algorithm finds solutions with a lower vΔ  than DE, 
PSO and the multi-start, with about 1/10 of the function evaluations.  
The trajectory corresponding to the best solution found by the incremental approach is 
represented in Fig. 2.19. 
 

Table 2.9. E-E-M results for 4 different approaches, values computed on 20 runs. 

 Best vΔ  [km/s] 

 

Average no. 
of function 
evaluations Average Standard 

deviation 

DE 200070 1.591 0.136 
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all-at-once 
PSO 
all-at-once 200000 1.556 0.238 

multi-start all-
at-once 210217 1.268 0.137 

Incremental 6097, 8519 1.171 0.081 
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Fig. 2.19. Projection on the ecliptic plane of the best solution found by the incremental algorithm. The 

total vΔ  is 1.08 km/s. 
 

2.8.3 EEVVMe Transfer 

This sequence to reach Mercury includes three swing-bys, 2 of which are resonant. It is 
the same sequence chosen for the MESSENGER mission [7], and is likely to be chosen 
for the BepiColombo mission [8], although the latter will use low-thrust propulsion. 
The launch excess velocity was fixed to 1.5 km/s, and no orbit insertion manoeuvre was 
considered at Mercury, because other resonant swing-bys may be added to further slow 
down the spacecraft. The objective function is then the sum of the deep space 
manoeuvres in each leg. The bounds for this problem are shown in Table 2.10. The 
launch window and the time of flights intervals were chosen to include the 
BepiColombo baseline mission option [16]. 
 

Table 2.10: Bounds for the E-E-V-V-Me test case. 

 Lower 
bound 

Upper 
bound Level 

0t  [d, MJD2000] 4500 5500 
θ  0 1 
δ  0 1 

1α  0.2 0.9 

1T  [d] 350 600 

1 

1γ  [rad] π−  π  2 
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,1pr  [planet radii] 1 5 

2α  0.01 0.99 

2T  [d] 300 450 

 

2γ  [rad] π−  π  

,2pr  [planet radii] 1 5 

3α  0.01 0.99 

3T  [d] 150 300 

3 

3γ  [rad] π−  π  

,3pr  [planet radii] 1 5 

4α  0.595 0.733 

4T  [d] 750 850 

4 

 
The 4th leg was required to perform 6 complete revolutions around the Sun. To this aim, 
the bounds on 4α  were restricted such that the propagated part of the leg can perform at 
least 3 complete revolutions, while the subsequent Lambert problem is solved searching 
for a 2-complete-revolution solution. 
For the incremental approach, 100, 100, 100, 200 starting points for levels 1 to 4 
respectively were used. The size of the boxes for level 1 was set to a fraction of the span 
of the space (apart from 0t ), as shown in Table 2.11. At the pruning of level 2, the back 
pruning was used, and the boxes were re-generated also on level 1, with their edge on 
variable 0t  reduced to 1/10. The reason is that the E-V leg introduces some constraints 
on the phasing of the Earth-Venus system, and this reduces dramatically the range of the 
possible launch dates, in order to have a low vΔ . For the variables of the levels 2 to 4, 
the size of the boxes was kept fixed, as in Table 2.11. 
 

Table 2.11: Box size for the E-E-V-V-Me test case. 
Level under 

pruning 
Box edges at 

level 1 
Box edges at 

level 2 
Box edges at 

level 3 
Box edges at 

level 4 

1 

1000 d 
0.2 
0.2 

0.2333 
50 d 

   

2…4 

100 d 
0.2 
0.2 

0.2333 
50 d 

1.25 rad 
1.33 
0.29 
30 d 

1.25 rad 
1.33 
0.29 
30 d 

1.25 rad 
1.33 

0.046 
20 d 

 
The objective function in Eq. (2.6) was chosen for searching the solutions on level 1 and 
3 of the incremental approach. These levels correspond to the resonant-swing-by legs E-
E and V-V respectively. For levels 2 and 4, the sum of the vΔ  was chosen. Local 
minima above 1, 1.1, 1.2 km/s were discarded at levels 1, 2, 3 respectively. 
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As in the E-E-M case, the pruning of level 1 does not identify any particular launch 
window, even if some periodicity is visible due to the eccentricity of the Earth orbit 
(Fig. 2.20). As seen in Fig. 2.21, the incremental algorithm clearly identifies an in-
plane, tangential launch.  Fig. 2.24 shows three classes of solutions with 3 possible time 
of flights 1T , clustered into 2 sets of boxes. The solutions are spread in a wide range on 

1α . 
 

4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500
t0, d, MJD2000

E-E-V-V-Me Level 1

 
Fig. 2.20: Projection on 0t  of boxes and solutions after pruning level 1. 

 

 
Fig. 2.21: Projection on ,θ δ  of boxes and solutions after pruning level 1. 
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Fig. 2.22: Projection on 1 1,Tα  of boxes and solutions after pruning level 1. 

 
The search at level 2 reveals that the solutions are no more spread along 0t  (Fig. 2.23): 
thus, the reduced size of the boxes allows identifying a few launch windows, between 
4900 and 5200 MJD2000 in particular. This result was expected and justifies choice for 
a smaller box size along 0t  after level 1. In Fig. 2.24 it is noticeable that the time of 
flight 2T  for the E-V leg should be around 430 d. The projection of the boxes along the 
axes of the Earth swing-by, Fig. 2.25, shows that the ideal Earth swing-by angle 1γ  is 
around 0. No pruning is done on ,1pr , as the solutions are spread in the whole span. 
The incremental approach proceeds in the same way up to level 4. At this point, the 
global solutions are found. Table 2.12 shows the comparison of the incremental 
approach with the two all-at-once approaches, in terms of objective function and 
number of function evaluations. 
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Fig. 2.23: Projection on 0t  of boxes and solutions after pruning level 2. 
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Fig. 2.24: Projection on 2 2,Tα  of boxes and solutions after pruning level 2. 

 

 
Fig. 2.25: Projection on 1 ,1, prγ  of boxes and solutions after pruning level 2. 

 
Table 2.12: E-E-V-V-Me results for 4 different approaches, values computed on 20 runs. 

Best vΔ  [km/s]  Avg. no. of 
obj. fun. eval. 

Time for objective 
function evaluation [s] Avg. Std. dev. 

DE 
all-at-once 400010 5842 8.456 0.444 

PSO 
all-at-once 460000 6900 6.094 0.920 

multi-start 
all-at-once 427499 6412 4.599 0.865 

Incremental 24397, 96674, 
184340, 154754 3625 3.89 0.739 

 
Table 2.13: Average time to evaluate the partial objective functions, for each level, in seconds. 

Level 1 Level 2 Level 3 Level 4 
31.8 10−⋅  33.5 10−⋅ 35.0 10−⋅ 21.5 10−⋅  

 
For this test case, the incremental algorithm outperforms all the other methods, using 
about the same number of function evaluations. Nevertheless, it has to be considered 
that all the all-at-once approaches evaluate the objective function for the complete 
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problem every time, while the incremental is evaluating that function only at level 4. 
The partial objective functions at lower levels are cheaper to compute, as they include 
less legs and zero-revolution Lambert problems, which are quicker to solve than the 
multi-revolution one at leg 4. Times for one function evaluation on an Intel Pentium 4 
3 GHz are reported in Table 2.13. The result is that the total time spent in evaluating the 
objective function is far lower for the incremental approach than for the others. At the 
same time the incremental approach was able to identify better trajectories. 
Fig. 2.26 plots the projection of the best trajectory found by the incremental algorithm 
during one of the 20 runs. The total 1f  is 4.55 km/s with a relative velocity at Mercury 
of 8.2 km/s. Note that, the reason why the relative velocity at Mercury is so high 
compared to the BepiColombo mission is that it was not included in any pruning 
criterion or in the objective function of the whole problem. 
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Fig. 2.26: Projection on the ecliptic plane of the best solution found by the incremental algorithm.  

 

2.8.4 EVVMeMe Trasnfer 

For this test we used the feasible set approach. The search was performed over and 
interval of 2000 days in the interval [3457, 5457] MJD2000. In this interval of launch 
dates there exist a particularly good solution for the EVVMeMe that was adopted as the 
chemical option for the ESA BepiColombo mission.  
The search for a feasible set at each incremental level was performed with the software 
code EPIC. No pruning on the variables γ and rp was considered and the number of 
resonant orbits was pre-assigned, i.e. fixed number of revolutions per leg. 
 
The boundaries on the TOF for each leg were computed as a function of the number of 
revolutions. In particular given the pericentre Rp and apocentre Ra of the expected 
transfer orbit and the number of full revolutions, the lower bounds is the period of the 
elliptical orbit with pericentre Rp and apocentre Ra times the number of revolutions 
while the upper bounds is the period of the same orbit times the number of full 
revolutions plus one.  
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Special partial pruning criteria were used for the legs ending with Venus and Mercury. 
In particular for the arrival conditions at Venus the following special pruning criterion 
was used: 

 
2 2
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v vf v
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θ +
= + Δ  (2.7) 

and for the arrival conditions at Mercury the pruning criterion was: 
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The pruning functions were selected based on the required effect of the gravity assist 
manoeuvres. In particular Venus gravity manoeuvres are expected to maximize the 
change in the perihelion while the manoeuvres at Mercury, combined with the DSM, are 
supposed to minimize the relative velocity at Mercury. 
 
The best sampled solution during the pruning process has a total Δv=6.5km/s with a 
vinf=4km/s at Mercury and vinf=3.869km/s at launch. This solution, represented in Fig. 
54, is not a local minimum but just a sample in the pruned space. For comparison, the 
chemical option of the mission BepiColombo has a total Δv=4.08km/s with a 
vinf=3.44km/s at Mercury and vinf=3.762 km/s at launch.  
The overall process required 225000 function evaluations and about 45 minutes of 
computational time on a Centrino 2GHz machine. The test was repeated 10 times with 
similar resulting pruned space.  
 

 
Fig. 2.27. Projection on the ecliptic plane of one of the sampled solutions in the pruned space 

 
Fig. 2.28 to Fig. 2.38 are showing what remains after the pruning process. The red dots 
are the set of solutions computed by EPIC on the remaining part of the solutions space. 
Each red dot is not a local minimum but a feasible solution belonging to the feasible set, 
i.e. each one of the component of each solution belong to one of the remaining boxed 
after the pruning. In the same figures the green dot represents the BepiColombo 

Venus 

Earth 

Mercury 
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mission. The colour of the boxes is proportional to the average value of all the feasible 
solutions in the box. Red corresponds to lower Δv, blue to higher Δv values. 
 

 
Fig. 2.28. Level 6 pruned space: variables α and TOF. The green point is the BepiColombo solution. 

 

 
Fig. 2.29. Level 6 pruned space: variables γ and rp. The green point is the BepiColombo solution. 
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Fig. 2.30. Level 5 pruned space: variables α and TOF. The green point is the BepiColombo solution. 

 

 
Fig. 2.31. Level 5 pruned space: variables γ and rp. The green point is the BepiColombo solution. 

 

 
Fig. 2.32. Level 4 pruned space: variables α and TOF. The green point is the BepiColombo solution. 
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Fig. 2.33. Level 4 pruned space: variables γ and rp. The green point is the BepiColombo solution. 

 
 

 
Fig. 2.34. Level 3 pruned space: variables α and TOF. The green point is the BepiColombo solution.  

 

 
Fig. 2.35. Level 3 pruned space: variables γ and rp. The green point is the BepiColombo solution. 
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Fig. 2.36. Level 2 pruned space: variables α and TOF. The green point is the BepiColombo solution. 

 
Fig. 2.37. Level 2 pruned space: variables γ and rp. The green point is the BepiColombo solution. 

 
Fig. 2.38. Level 1 pruned space: variables α and TOF. The green point is the BepiColombo solution. 
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2.8.4.1 Search Space Analysis 

The importance of the selection of the right pruning criterion for each level can be 
understood by looking at the value of the total Δv at level 2 and 3 as a function of the 
parameter α and of the time of flight of the second leg of the EVVMeMeMe trajectory.  
All the other components of the solution vector correspond to the BepiColombo mission 
which is taken as the reference solution. 
Fig. 2.39 to Fig. 2.48 shows the contour plots of the total Δv at level 2 as a function of 
the position of the DSM manoeuvre and the time of flight for the VV leg. Each contour 
plot was generated for a different value of the angle γ of the Venus gravity assist 
manoeuvre. The pruning threshold was fixed at 9 km/s. From the figures it can be seen 
that if the Δv was selected as pruning criterion three local minima could be identified, 
two of which, for α larger than 0.2 appear and disappear depending on the value of γ 
and one, a strong minimum, exist for every value of the angle γ. The local minimum 
visible in Fig. 2.42 for a time of flight of 630 days corresponds to the BepiColombo 
solution. However up to the second Venus flyby included, there is no way to distinguish 
among the three minima without an additional criterion. 
Fig. 2.49 show the total Δv at the end of the third level with the spacecraft reaches 
Mercury for the first time. As can be seen the only part of the solution space that 
survives corresponds to the local minimum at 630 days, the BepiColombo solution. 
At level 2, however, the required Δv at level 3 is know known and cannot be computed 
and a different pruning criterion is required to identify the correct portion of the solution 
space. 
Alternatively, all the three regions including the three minima have to be preserved until 
the next level. At level three, the back pruning process would successfully remove the 
two suboptimal regions. 
 

 
Fig. 2.39. Δv at level 2 for different TOFs and angle α 
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Fig. 2.40. Δv at level 2 for different TOFs and angle α 

 
Fig. 2.41. Δv at level 2 for different TOFs and angle α 

 
Fig. 2.42. Δv at level 2 for different TOFs and angle α 
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Fig. 2.43. Δv at level 2 for different TOFs and angle α 

 
Fig. 2.44. Δv at level 2 for different TOFs and angle α 

 
Fig. 2.45. Δv at level 2 for different TOFs and angle α 
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Fig. 2.46. Δv at level 2 for different TOFs and angle α 

 
Fig. 2.47. Δv at level 2 for different TOFs and angle α 

 
Fig. 2.48. Δv at level 2 for different TOFs and angle α 
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Fig. 2.49. Δv at level 3 for different TOFs and angle α 

2.9 Final Remarks 
In Part 2 of this report we presented an incremental approach to the solution of multiple 
gravity assist trajectories with deep space manoeuvres and an incremental approach to 
the automatic selection of a sequence of swing-bys. 
Different variants of the main idea were presented together with their main advantages 
and drawbacks.   
In particular, through the introduction of an affine transformation, we managed to avoid 
the exponential growth of the number of possible paths although the structural 
complexity of the solution spaces increases.  The affine transformation, if fact, allows us 
to collect all the boxes that at each level survived the pruning process but introduces 
discontinuity and artificial local minima. 
From the preliminary tests performed in this work we did not notice any significant 
increase in the difficulty of the search for a global minima due to the affine 
transformation itself. The actual difficulty arises from the collection of boxes rather than 
from the introduction of artificial nasty features in the solution space. 
In fact, collecting the boxes does not allow the identification of isolated families of 
solutions. 
On the other hand, preserving the families at each level would potentially result in an 
exponential growth of the number of families.  
A possible solution could come from the back pruning. The backward pruning, in fact, 
reduces drastically the number of paths at level i-th thanks to the information collected 
at level i+1.  
The backward pruning solves partially even the problem related to the correct use of the 
pruning function at each level. As we explained before, a pruning function directly 
related to the objective function of he entire trajectory can be totally inappropriate to 
prune the search space at each level i. On the other hand if the forward pruning at level I 
is not sufficient to discriminate between good areas and useless areas the backward 
pruning from level i+1 seems to be quite effective in many practical cases. 
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An open problem is, therefore, to remove the affine transformation and some of the 
special pruning functions introduced in this work and to let the backward pruning do the 
job. 
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PART 3 EXTENDING THE
GASP METHOD

3.1 Global Optimisation Algorithms

3.1.1 Introduction

This section presents a selection of global optimisation algorithms that have been
employed throughout the project.

The algorithms described in this section are Differential Evolution (DE) and
Particle Swarm Optimisation (PSO). Each of these optimisers can be considered an
instance-based stochastic algorithm as they do not contain any probabilistic data of
the model. Both algorithms have been tested on spacecraft trajectory optimisation
problems, as reported in [1].

In the following sections each algorithm is described briefly. For more compre-
hensive descriptions please refer to the relevant references provided.

3.1.2 Differential Evolution, DE

Differential Evolution is a novel incomplete probabilistic global optimiser based on
Genetic Algorithms, and was the highest ranked GA-type algorithm in the First In-
ternational Contest on Evolutionary Computation. Additionally, DE is the standard
global optimisation algorithm implemented in Mathematica. The algorithm was de-
veloped by Rainer and Storn [2]. An overview of the algorithm is given below.
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Differential Evolution Algorithm (DE1)
1. Initialisation: select population vectors uniformly randomly over

search space
2. Repeat
3. For each population vector xi

4. Select two other individuals uniformly randomly over entire
population, x2 and x3

5. Create test vector x′i = xi + F (x3 − x2)
6. Evaluate f ′i .
7. If (f ′i < fi)
8. Replace xi with x′i
9. end
10. end.
11. Until Convergence

In this work we have used a Matlab implementation of Differential Evolution
which can be found at:

http://www.icsi.berkeley.edu/~storn/devec3.m

3.1.3 Particle Swarm Optimisation, PSO

PSO was originally designed as a simulation of flocking behaviour in birds, although
its potential for optimisation was recognised shortly afterwards. Each particle, anal-
ogous to the idea of an individual in genetic algorithms, has a position within the
search space and a velocity, both of which are initialised randomly.

The algorithm was first presented by Kennedy and Eberhart in 1995 [3]. In the
original form of the algorithm, each particle keeps tracks of the position of the best
solution it has so far encountered, and also knows the globally best solution found
by the entire population. The velocity is updated by two main components: the
cognitive component, which attracts the particle towards its own best solution, and
the social component, which attracts the particle to the best known solution. The
essence of the algorithm is encapsulated in the following equations:

xi = xi + vi (3.1)

vi = ωvi + η1r1(x
?
p − xi) + η2r2(x

?
g − xi), (3.2)

where x?
p is the individual best solution of the ith particle, x?

g is the globally best
known solution, and r1, r2 are uniform random numbers in the interval [0,1]. An
overview of the algorithm is given below.
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Particle Swarm Optimisation Algorithm
1. Initialise x uniformly randomly over search space.
2. Initialise v uniformly randomly within hyperparallelipiped

of scale vmax of the search space.
3. Repeat
4. For each population vector xi

5. Calculate objective function fi

6. If (fi < f ?
pi)

7. f ?
pi = fi

8. x?
pi = xi

9. end
10. If (fi < f ?

g )
11. f ?

g = fi

12. x?
g = xi

13. end
14. vi = ωvi + η1r1(x

?
p − xi) + η2r2(x

?
g − xi)

15. xi = xi + vi

16. end
17. Until Convergence

In this work we have used a C implementation of PSO known as Standard PSO
2006, which can be found at:

http://www.particleswarm.info/Standard PSO 2006.c.
This PSO implementation has been interfaced to Matlab by means of a MEX func-
tion.

3.2 Pruning Algorithm for Model 2

3.2.1 Introduction

A pruning method known as GASP (Gravity Assist Space Pruning) has been pro-
posed [1],[4] to solve Multiple Gravity Assist (MGA) trajectories with a known
planetary sequence and no deep space manoeuvres. GASP showed that the vast
majority of such a search space consists of infeasible, or very undesirable, solutions.
This observation motivated the development of a method for producing reduced
search spaces by pruning, thus allowing global optimisation techniques to be applied
more successfully on the reduced domains. Secondly this method took advantage of
the sequential nature of the problem. By pruning on a phase by phase basis, large
savings in computational time were achieved.

Designing multiple gravity assist missions with no deep-space manoeuvres is
limited in scope, since many possible trajectories cannot be considered, and, as
practice shows, deep space manoeuvres are used in real missions. If the problem
of multiple gravity assist with deep space manoeuvres could be pruned efficiently,
then the computational cost of optimizing such trajectories may be significantly
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reduced. The introduction of deep space manoeuvres offers the further advantage
of providing a reasonable approximation of multiple gravity assist trajectories with
low-thrust arcs. If a transfer arc is no more simply ballistic but is shaped by one or
more propelled manoeuvres (either impulsive or low-thrust) the number of degrees
of freedom increases significantly. Hence, an efficient solution process would have
to make use of additional information to reduce the number of possible alternatives
(pruning the search space) so reducing the computational cost, and increasing the
likelihood of finding good solutions.

A method is now described that is capable pruning the search space of missions
with multiple gravity assist trajectories that contain deep space manoeuvres for the
particular case of powered swingby’s. The proposed pruning technique can be seen
as an extension of the original GASP algorithm.

3.2.2 Desirable Properties

GASP was efficient and desirable for many reasons. In an attempt to extend its
functionality the following properties of the original algorithm can be noted:

1. The algorithm used the sequential nature of the problem;

2. it prunes on the basis of feasibility;

3. and it produces families of feasible solutions

As the trajectory model with deep space manoeuvres and powered gravity assists
that is available also exhibits sequential properties, it is a good idea to take advantage
of this. In this manner, a mission that contains multiple phases can initially be
pruned one phase at a time.

GASP employed grid sampling as a method for evaluating the search space of
each phase. If the sampled point satisfied a certain constraint, then the point was
considered feasible and kept, else it was infeasible and hence removed. While grid
sampling is usually considered inefficient, as only a two dimensional search was ever
performed it was acceptable. It is shown in this report that grid sampling in the
number of dimensions required when a deep space manoeuvre is being considered
is not practical. An alternate method for sampling the search space is described in
the next section.

Finally the ability to define solution families across the whole scope of the mis-
sion ensured that feasible regions in one phase were not combined with feasible
regions in later phases, unless it was physically possible. This reduced the num-
ber of combinations of bounding boxes and prevented impossible trajectories that
involved being in two places at one time from being generated.

3.2.3 Pruning Algorithm with Deep Space Manoeuvres

The following sections define the sequential optimisation problem being addressed,
and describe how the algorithm works in a step by step manner. It should be
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noted that the pruned search space will still contain many local minima. For this
reason a global optimisation algorithm is required after the pruning is complete.
Several test cases including those based upon real missions have been implemented
to demonstrate the effectiveness of the pruning strategy. Complexity analysis shows
that the algorithm scales well as the number of phases in the mission increases. The
pruning method presented here has been published during the course of this project
at the 2007 IEEE World Congress on Evolutionary Computation, Singapore [5].

3.2.4 Problem Definition

The problem of interest may be formulated as a multi-stage optimisation problem
(MSOP). An example of how the original GASP algorithm may be case as a multi-
stage optimisation problem is given below.
MSOP: Find the decision vector

x =
[
xT

1 , xT
2 , · · · , xT

s+1

]T ∈ Ω (3.3)

where each sub-vector xk, k = 1, . . . , s+ 1 is associated with a stage of the problem,
to minimise the objective function

f(x, z1, · · · , zs+1) (3.4)

subject to the following constraints

zk = hk(x1, · · · ,xk+1), k = 1, · · · , s (3.5)

gk(zk) ≤ 0, k = 1, · · · s+ 1 (3.6)

where for example the inequality constraints may represent bounds on individual
∆V ’s. If we let Ω be the Cartesian product of all the s+1 hyper-rectangles, then
Ω = Ω1 × Ω2 × · · · × Ωs+1. Each hyper-rectangle is bounded such that Ωk = {xk ∈
Rnk |x(k)

L ≤ xk ≤ x
(k)
U }, k = 1 . . . , s + 1. In this manner Ω defines the whole search

space for a single mission and likewise Ωk defines the search space for a single phase
of a mission.

The objective function is assumed to be scalar as in almost every case it is the
sum of all ∆V ’s. Such a mapping can be written as f : Ω× Rq1 × · · · × Rqs+1 → R.

The vectors zk ∈ Rqk , k=1,. . . ,s + 1, are intermediate variables associated with
each stage. For example, they may represent ∆V ’s associated with different ma-
noeuvres.

Each of the intermediate functions hk : Ω1 × Ω2 × · · · × Ωk+1 → Rmk and gk :
Rqk → Rdk is associated with a particular stage k.

Note that the calculation of the constraint function gk depends on intermediate
variables calculated at stage k, and the objective function depends on the values of
the intermediate variables zk, k=1,. . . , s+1, hence a specific order must be followed
to evaluate the objective function f and the constraint functions gk.

The presence of inequality constraints in the MSOP requires careful considera-
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tion. Although bounds on the decision variables are easy to manage, more general
inequality constraints are more difficult to handle in global optimisation. A plausible
method is to prune the search space based on feasibility (i.e. constraint satisfaction).
This has an important benefit: the size of the search space is reduced hence sim-
plifying the optimisation task. One simple method of pruning is to grid sample the
search space with a suitable resolution so that unfeasible areas can be detected by
evaluating the constraint functions, and subsequently eliminated, leaving a reduced
search space where optimisation can be applied. However, the cost of grid sampling
with reasonable resolutions may be prohibitive when the search space dimension is
larger than two or three.

The mission considered by the original GASP method includes powered gravity
assist at intermediate planets, and if required a braking manoeuvre at the arrival
planet for orbit insertion. The problem addressed by GASP can be cast as a MSOP.
Here, the decision vector x consists of the launch date and transfer times between
planets, the intermediate variables zk are the ∆v’s applied at each planet. The
functions hk represent the calculations that are required to find the intermediate
variables (solution of Lambert problems, swing-by models), the objective function is
the sum of the magnitudes of the ∆v’s. The constraint functions gk are related to
upper bounds on the ∆v’s at each planet (as thrusters have limits), as well as lower
bounds for the periapsis radius at each swing-by planet (to keep a safe distance from
the planet).

The following sections describe the pruning algorithm with deep space manoeu-
vres. A simple two phase mission with a deep space manoeuvre in each phase and
a swingby followed by a breaking manoeuvre will be used as an example. This
method can easily be extended to incorporate multiple deep space manoeuvres and
more phases.

3.2.5 Two Phase Mission with Deep Space Manoeuvres

A hypothetical mission is considered for the purposes of describing the pruning
method. The mission consists of two phases, each containing a deep space manoeu-
vre. The phases are linked with a powered swingby. The constraints that determine
feasibility are the launch velocity (modeled as an impulsive manoeuvre), the impul-
sive deep space manoeuvres and a breaking manoeuvre to achieve orbital insertion.

The notation used to describe the algorithm is as follows. The super-script in
parenthesis (e.g. (1), (2)) indicates the phase of the mission. ∆vdep is the impulsive
manoeuvre at departure, ∆vDSM is an impulsive manoeuvre at deep space, ∆vga is
an impulsive manoeuvre at a gravity assist planet, ∆vb is a braking manoeuvre that
is performed for orbit insertion purposes, vin is the arrival velocity at a swingby
planet, vout is the departure velocity from a swingby planet, t0 is the mission launch
date, tarr is an arrival time at the end of one phase, tdep is the departure time at the
beginning of a phase, Tof is the time of flight of a given phase.
Model 2 Revisited

The model that this pruning algorithm uses requires two timing parameters to
be set for each phase of the mission. The initial time t0 specified in MJD2000
and the time taken in days for the spacecraft to fly from the departure planet to
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its destination, tof . Each deep space manoeuvre is then characterized in polar co-
ordinates by the following parameters:

• r: Distance from the Sun (km) at which the DSM occurs. The vector from
the Sun to the deep space manoeuvre is denoted as rDSM.

• θ: In-plane angle (angle between rp1 and the projection of rDSM on the orbital
plane of the first planet). This projection is denoted as r′DSM in Figure 3.1.

• φ: out of plane angle (angle between rDSM and its projection r′DSM on the
orbital plane of the first planet)

• α: The timing of the DSM as a fraction in the interval [0, 1] of the time of
flight.

Figure 3.1: Graphical description of model 2. A single phase with 1 deep space
manoeuvre.

One of the advantages of using this model is that it allows missions with multiple
phases to be considered. In these cases any two consecutive deep space flight phases
can be considered independently without taking into account the swingby of the
planet. This is due to the fact that the initial velocity is not needed to compute the
Lambert arc. Rather, the initial and final velocities are outputs from the Lambert
solver. Once two consecutive legs are computed, both the incoming and outgoing
velocity at the planet become available and the swingby (with the powered model)
can be computed.

In this way, in order to create the whole trajectory, the only requirement is that
the time at each planet is the same for all the phases arriving or departing from that
planet. At this point, no constraints are considered on the incoming and outgoing
velocities. Thus, it is possible to analyse (optimise, prune) the deep space flight
phases first, then match them with the swingbys and prune again on the basis of
the feasibility of the swingby.
Algorithm 1: First Phase Pruning

The decision vector associated with this leg is as follows:

x1 = [t0, T
(1)
of , r

(1), α(1), θ(1), φ(1)]T (3.7)
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In cases when there are no DSM’s present in a phase then the decision vector
will comprise only the two timing variables (t0, T

(1)
of ). However there will be occa-

sions when a single phase consists of multiple DSM’s. In such a case the original
parameters, (r(1), α(1), θ(1), φ(1)) will themselves become vectors of length j. Where
j represents the number of manouevres present in the phase.

Assume that x1 is initially limited to the hyper-rectangle Ω1 ⊂ <6, such that each
element of x1 is initially bounded between lower and upper limits: xl

1,j ≤ x1,j ≤ xu
1,j,

j = 1, . . . , 6.
We are interested in pruning the search space by finding an estimate of the

feasible regions of the search space associated with the first leg, with respect to
constraints on the departure impulse ∆v

(1)
dep, and the deep space manoeuvre impulse

∆v
(1)
DSM. To find such an estimate, we propose the use of a local optimisation al-

gorithm, which can be started from multiple random vectors within the admissible
region Ω1, and stopped when feasible vectors are found. This procedure is then fol-
lowed by the application of a clustering algorithm to find an estimate of the region.
We have used in this work the mean shift clustering algorithm [6], [7], which does
not require an a priori specification of the number of clusters. Thus the algorithm
to prune the search space associated with the first phase is as follows:

1. Generate randomly N1 starting vectors within the admissible region for the
first phase: x̄i

1 ∈ Ω1 ⊂ <6, i = 1, . . . , N1.

2. Start a constrained local optimisation algorithm, such as sequential quadratic
programming, from each initial vector x̄i

1, i = 1, . . . , N1 to solve the following
problem:

min
x1

f1(x1) = ∆v
(1)
dep + ∆v

(1)
DSM (3.8)

subject to [
∆v

(1)
dep

∆v
(1)
DSM

]
= h1(x1)

∆v
(1)
dep ≤ ∆vmax

dep

∆v
(1)
DSM ≤ ∆vmax

DSM

(3.9)

where ∆v
(1)
dep is the impulsive manoeuvre at launch, ∆v

(1)
DSM is the impulsive

manoeuvre performed at deep space during phase 1. Note that the constrained
optimisation algorithm may be stopped as soon as a feasible vector satisfying
the inequality constraints is found. If a feasible vector is found, it is recorded
as x̂i

1. If no feasible vector is found starting from x̄i
1, then the optimisation

starts again with the next value of i. This step ends with a collection of feasible
vectors x̂i

1 i = 1, . . . ,M1, where M1 ≤ N1. If no feasible vectors are found, the
algorithm stops.

3. Given the set of feasible vectors found in step 2, run the clustering algorithm
to find a set of P1 clusters, so that each vector x̂i

1 is assigned to a cluster Cj,
where i = 1, . . . ,M1 and j = 1, . . . , P1.
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4. This step uses the information in the clusters to form one bounding box for
each cluster Cj, j = 1, . . . , P1. Let xmin,j ∈ <6 be a vector so that each of
its elements xmin,j

i is the minimum i-th coordinate value for all the vectors in
cluster Cj. Similarly, let xmax,j ∈ <6 be a vector so that each of its elements
xmax,j

i is the maximum i-th coordinate value for all the vectors in cluster Cj.
Then the bounding box for cluster j is defined as

B
(1)
j = {x ∈ Ω1 ⊂ <6|xmin,j ≤ x ≤ xmax,j}. (3.10)

Note that each B
(1)
j is a subset of Ω1, the original search space for the decision

variables associated with phase 1. The set of bounding boxes B
(1)
j , j = 1, . . . , P1

represents the initially pruned search space for phase 1 (this set is updated later, in
a backward constraining step). Denote B(1) as the set of bounding boxes Bj, j =
1, . . . , P1.
Algorithm 2: Second Phase Pruning

The model employed in this study is based on the patched conic approach. This
requires that the time of arrival at the end of the first phase to be identical to the
time of departure for the second phase. Given values for the launch time t0 and the
time of flight for the first leg T

(1)
of , the time of arrival at the end of phase 1, which is

equal to the time of departure for phase 2, is given by:

t(1)
arr = t

(2)
dep = t0 + T

(1)
of (3.11)

We have found in phase 1 a set of intervals of feasible values for the arrival
time t

(1)
arr. Such intervals are derived from the first two co-ordinates of the bounding

boxes for phase 1, B
(1)
j , j = 1, . . . , P1. Since t

(1)
arr = t

(2)
dep then it only makes sense

to consider values of t
(2)
dep within the same intervals. This was the main idea that

was exploited in the design of the original GASP method [1], [4]. Let us denote

the feasible intervals for t
(2)
dep as Ij, j = 1, . . . , P1. Note that such intervals may, in

general, overlap. Denote I as the union of all intervals Ij, j = 1, . . . , P1.
Given that we are assuming a powered swingby, the arrival and departure veloc-

ities are decoupled (the departure velocity does not depend on the arrival velocity,
provided any bound constraints on the ∆v magnitude are not hit), so we can com-
pute the second phase without having computed first the powered swingby. Assume
that the second phase also involves a single deep space manoeuvre, so that the
decision vector for the second phase is:

x2 = [T
(2)
of , r

(2), α(2), θ(2), φ(2)]T (3.12)

where T
(2)
of represents the time of flight for the second leg, and {r(2), α(2), θ(2), φ(2)}

are parameters associated with the deep space manoeuvre that takes place in the
second phase. Note that there is one less parameter here than in the launch phase.
Let us denote the initial admissible region for x2 as Ω2.

In order to compute the second phase, it is necessary to specify values for t
(2)
dep

and x2. Define an augmented vector associated with the second phase as follows:
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X(2) = [t
(2)
dep, xT

2 ]T ∈ <6 (3.13)

Let us define the admissible region for this vector as Ω̄2 = I × Ω2. The pruning
algorithm for the second phase can now be described as follows:

1. Generate randomly N2 starting vectors within the admissible region for the
second phase: X̄i

2 ∈ Ω̄2 ⊂ <6, i = 1, . . . , N2.

2. Start a constrained local optimisation algorithm, such as sequential quadratic
programming, from each initial vector X̄i

2, i = 1, . . . , N2 to solve the following
problem:

min
X2

f2(X2) = ∆v
(2)
DSM + ∆v

(2)
b (3.14)

subject to [
∆v

(2)
DSM

∆v
(2)
b

]
= h2(X2)

∆v
(2)
DSM ≤ ∆vmax

DSM

∆v
(2)
b ≤ ∆vmax

b

(3.15)

where ∆v
(2)
DSM is the deep space manoeuvre, and ∆v

(2)
b is the braking manoeuvre

at the final planet. Note that the constrained optimisation algorithm may be
stopped as soon as a feasible vector satisfying the inequality constraint is found.
If a feasible vector is found, it is recorded as X̂i

2. If no feasible vector is found
starting from X̄i

2, then the optimisation starts again with the next value of i.
This step ends with a collection of feasible vectors X̂i

2 i = 1, . . . ,M2, where
M2 ≤ N2. If no feasible vectors are found, the algorithm stops.

3. This step checks the feasibility of each of the vectors found in Step 2 with
respect to the gravity assist manoeuvre. From each of the vectors found in
Step 2, X̂i

2 i = 1, . . . ,M2, extract the departure time t
(2,i)
dep , and take the cor-

responding departure velocity vector v
(2,i)
out (which is computed as part of the

evaluation of the second leg). Then, given values for t
(2,i)
dep , and v

(2,i)
out , start

a constrained local optimiser from N3 randomly generated vectors xj
1 ∈ B(1),

j = 1, . . . , N3, to solve the following problem:

min
x1

f1(x1) = ∆v
(1)
dep + ∆v

(1)
DSM (3.16)
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subject to
x1 ∈ B(1)∆v

(1)
dep

∆v
(1)
DSM

v
(1)
in

 = h̄1(x1)

∆v(1)
ga = q1(v

(1)
in ,v

(2,i)
out , r

(1)
min)

t0 + T
(1)
of − t

(2,i)
dep = 0

∆v
(1)
dep ≤ ∆vmax

dep

∆v
(1)
DSM ≤ ∆vmax

DSM

∆v(1)
ga ≤ ∆vmax

ga

(3.17)

where v
(1)
in is the arrival velocity at the gravity assist planet, ∆v

(1)
ga is the im-

pulsive manoeuvre performed at the gravity assist planet, r
(1)
min is the minimum

allowed pericenter altitude during the gravity assist manoeuvre. If a feasible
solution x̃1 is found out of the N3 local optimiser runs, then x̃1 is stored, and
the vector X̂i

2 is confirmed as feasible, otherwise X̂i
2 is discarded. This results

in Q2 ≤ M2 feasible vectors associated with the second phase, and Q1 ≤ M1

feasible vectors associated with the first phase.

4. Given the set of feasible vectors found in step 3, run the clustering algorithm
to find a set of P2 clusters, so that each vector X̂i

2, is assigned to a cluster

C
(2)
j , where i = 1, . . . , Q2 and j = 1, . . . , P2.

5. This step uses the information in the clusters found in step 4 to form one
bounding box for each cluster C

(2)
j , j = 1, . . . , P (2). Let Xmin,j ∈ <6 be a

vector so that each of its elements Xmin,j
i is the minimum i-th coordinate

value for all the vectors in cluster C
(2)
j . Similarly, let Xmax,j ∈ <6 be a vector

so that each of its elements Xmax,j
i is the maximum i-th coordinate value for

all the vectors in cluster C
(2)
j . Then the bounding box for cluster j is defined

as
B̄

(2)
j = {X ∈ Ω̄2 ⊂ <6|Xmin,j ≤ x ≤ Xmax,j}. (3.18)

Note that the bounding boxes found in step 5 are associated with the augmented
variable X2 defined in equation (3.13). It is straightforward to find the bounding

boxes B
(2)
j that correspond to the original variable vector x2. Denote the set of such

boxes as B(2).
Backward Constraining (re-clustering phase 1)

Given the set of feasible vectors x̃k
1, k = 1, . . . , Q1, which are found in Step 3

of Algorithm 2, it is possible to run again the clustering algorithm and find, in a
similar way as done in step 3 of Algorithm 1, a new set of P̄1 bounding boxes B̄(1),
j = 1, . . . , P̄1, for phase 1. This usually results in the shrinking of the previously
found set of boxes for phase 1, and possibly in the elimination of some of them.
Denote the new set of bounding boxes for phase 1 as B̄(1), which represents the
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final pruned search space for phase 1. Note that this step defers from the backward
constraining step in the original GASP algorithm, as it is based on re-clustering the
previous phase, and not on the backward propagation of time constraints.
Algorithm 3: Global Optimisation of the Pruned Search Space

Even after pruning it is still highly likely given the nature of the search space
that many local minima are still present. Hence global optimisation is an important
tool needed to produce a solution to the problem.

The output from the pruning algorithm has been specifically formulated such
that any global optimiser can be used to find a solution. One of the key features
of this pruning algorithm is its ability to locate solution families. As the time of
arrival at the first phase is equal to the time of departure for the second phase, it is
possible to associate each of the bounding boxes found in the first phase with one or
more boxes found in the second phase. Suppose that box B̄

(1)
k from the first phase is

associated with box B
(2)
l from the second phase to form a solution family with index

s. Denote the search space associated with solution family s as Bs = B̄
(1)
k × B

(2)
l .

Assume that S solution families are identified. Identifying solution families is an
important feature as it prevents impossible combinations of bounding boxes from
being defined.

In the case of this example mission with two deep space manoeuvres the decision
variable is 11-dimensional:

x = [t0, T
(1)
of , r

(1), α(1), θ(1), φ(1) · · ·

T
(2)
of , r

(2), α(2), θ(2), φ(2)]T
(3.19)

1. Define two positive integers N4 and N5, where N5 >> N4, and N4 > dim(x).
For each solution family s = 1, ...S, use a global optimiser to solve the following
problem allowing N4 iterations:

min
x
f(x) = ∆v

(1)
dep + ∆v

(1)
DSM + ∆v(1)

ga + ∆v
(2)
DSM + ∆v

(2)
b (3.20)

subject to
x ∈ Bs

∆v
(1)
dep

∆v
(1)
DSM

v
(1)
in

v
(2)
out

∆v
(2)
DSM

∆v
(2)
b


= h(x)

∆v(1)
ga = q1(v

(1)
in ,v

(2,i)
out , r

(1)
min)

(3.21)

Notice that the bounding boxes found by the pruning method approximate
the feasible regions with respect to the inequality constraints associated with
the original optimisation problem (mainly constraints on the various ∆v mag-
nitudes). Because of this, it is possible to ignore such constraints at the final
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optimisation step, and simply check the solutions found for feasibility with
respect to such constraints. This is what we have done in the case studies
presented below. Alternatively, the inequality constraints could be considered
by the global optimisation algorithm using methods such as those described
in [8].

This results in S (sub-optimal) decision vectors xk, k = 1, . . . , S, one for each
solution family. Each of these solution vectors contains useful information to
the mission analyst, since each of them corresponds to the best feasible solution
(with N4 iterations) found for the corresponding solution family (notice that
each solution family is associated with a feasible launch window), and hence
each solution gives an upper bound for the objective function within each
solution family. Out of these solution vectors, the one that gives the lowest
value of the objective function is denoted as the best solution found with N4

iterations. Denote as s∗ the index of the solution family corresponding to the
best solution found to N4 iterations.

2. For solution family s∗ selected in step 1, use a global optimiser to solve the
optimisation problem defined by Equations (3.20) and (3.21) allowing N5 it-
erations of the global optimiser. Store the best value of the decision vector x∗

found in this step, and the corresponding objective function value.

The purpose of step 1 is to do a brief evaluation of the solution families to
select the one which is most likely to contain the best solution, based on the
progress of the global optimiser after N4 iterations. Step 2 then optimises
the solution family selected in step 1 to a greater number of iterations. It is
assumed that all other tuning parameters of the optimisation algorithm are
the same in steps 1 and 2.

3.2.6 Pruning algorithm for more than two phases

Generalising the pruning algorithm described in the previous section to the more
general case of n phases is not difficult. The following points should be considered.

• Launch phase: the pruning is performed by using Algorithm 1 as described
above.

• Intermediate phases: These are dealt with by using Algorithm 2 as described
above, but without calculating a braking manoeuvre, followed by the appli-
cation of the backward constraining step. Notice that when Algorithm 2 is
applied at phase k, the subsequent backward constraining step is carried out
on phase k − 1.

• Final phase: this is pruned by using Algorithm 2 as described above, followed
by the application of the backward constraining step.
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3.2.7 Complexity Analysis

This section will analyze the complexity of the pruning algorithm. It will be shown
that the time complexity algorithm scales linearly as the number of phases in a
mission increases.

An important subroutine called by the trajectory pruning algorithm is the Lam-
bert Solver. Evaluating one phase, the Lambert solver is called at least once per
objective function evaluation when there are no deep space manoeuvres, and multiple
times when manoeuvres are present. In general if there are n deep space manoeuvres
in a phase, then there will be n+ 1 calls to the Lambert Solver. Since the objective
function of the mission is not considered by the proposed pruning method, and the
objective function employed for pruning varies between phases, is is not possible to
measure the complexity of the pruning algorithm in terms of the number of evalua-
tions of a single objective function. For this reason the following complexity analysis
is based on the number of calls to the Lambert solver.

3.2.8 Pruning Complexity

As the algorithm does not require the search space to be discretised, the parameters
which define a mission phase can be within any user given bounds and the analysis
will still hold. The algorithm can be broken down into three distinct parts:

1. Launch phase

2. Subsequent phases

3. Swingby application

The notation described in table 3.1 is used for this analysis.
Launch Phase

This analysis corresponds to Algorithm 1, step 2. We consider the launch phase
separately to other phases for two reasons. According to Algorithm 1, the local
optimiser can be started from anywhere within the search space sub domain noted
by Ω1. In later phases, the optimiser is restricted to windows defined by previous
phases. Secondly there is an extra constraint considered here that is not considered
in other stages. As a result the local optimiser is allowed to iterate further to try
and find a feasible point.

If a trajectory is purely ballistic (i.e. no DSM’s are present) then only one call
to the Lambert solver is required per objective function evaluation. However, as the
trajectory becomes more complicated, more Lambert solutions are required. The
relationship between the number of deep space manoeuvres in the launch phase,
and the number of calls to the Lambert solver per objective function evaluation can
be expressed as follows:

l1 = s1(d1 + 1) (3.22)

As there will be k1 evaluations of the objective function during this phase, the
number of Lambert solutions for the launch phase is given by:

89



Lp total number of calls to Lambert solver for the pruning stage
Lg total number of calls to Lambert solver for the global optimisation

stage
Lg total number of calls to Lambert solver for the pruning and global

optimisation stages
n number of phases
s1 number of local optimisations in the first phase
si number of local optimisations per window (i > 1) in subsequent phases
di number of DSM’s in phase i
wi number of departure windows found in phase i
k1 number of objective function evaluations in phase 1 when executing

Algorithm 1, step 2
k2,i number of objective function evaluations in phase i when executing

algorithm 2
k2 upper bound on the number of objective function evaluations in all

phases when executing algorithm 2
k3 upper bound on the number of objective function evaluations in all

phases when executing algorithm 3

Table 3.1: Complexity analysis notation

l1 = s1(d1 + 1)k1 (3.23)

Typical values for k1 lie in the interval [300, 350].
Remaining Phases

This analysis corresponds to Algorithm 2, step 2. The complexity structure is
very similar for the remaining phases to that of the first phase. The number of
Lambert solutions required to carry out Algorithm 2 in phase i can be calculated
from:

l
(i)
2 = siwi(di + 1)k2,i (3.24)

In equation 3.24 the term siwi is equal to the total number of local optimisations
carried out in that stage. If we now combine all the phases of the mission equation
3.25 indicates how many calls to the Lambert solver are made as a result of applying
Algorithm 2 in all phases.

l2 =
n∑

i=2

l
(i)
2 =

n∑
i=2

siwi(di + 1)k2,i (3.25)

If we consider an upper bound on the number of function evaluations per phase
when applying step 2 of Algorithm 2, such that k2 >= k2,i, i = 2, . . . n, then is is
possible to find an upper bound on the number of Lambert evaluations as a result
of applying step 2 of Algorithm 2 in all phases:

l2 < k2

n∑
i=2

siwi(di + 1) (3.26)
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Swingby application
This analysis corresponds to Algorithm 2, step 3. Applying the swing by ma-

noeuvre to link consecutive phases requires more effort from the local optimiser.
This is represented by increasing the maximum number of iterations the optimiser
can run for. In this case, the number of objective function evaluations is in most
practical cases much larger than k1 and k2. Consider an upper bound on the number
of function evaluations per phase when applying step 3 of Algorithm 2, k3. Then
the total number of Lambert solver calls when applying step 3 of Algorithm 2 obeys
the following inequality:

l3 < k3

n−1∑
i=2

siwi(di + 1) (3.27)

Total complexity of pruning stage
Combining the launch, deep space flight and swingby complexity equations given

by 3.23, 3.26 and 3.27 respectively produces the following inequality, which is a
measure of the total pruning complexity with respect to the number of Lambert
solutions required:

Lp < s1(d1 + 1)k1 + k2

n∑
i=2

{siwi(di + 1)}+ k3

n−1∑
i=2

{siwi(di + 1)} (3.28)

Assume that si ≤ s̄, i = 1, . . . , n, and the number of deep space manoeuvres in
each phase is bounded by di ≤ d̄, i = 1 . . . n. Let γ = s̄(d̄+ 1). Then inequality 3.28
can now be rewritten as:

Lp < γk1 + k2

n∑
i=2

(wiγ) + k3

n−1∑
i=2

(wiγ) (3.29)

Assume that wi is bounded for each phase after launch, so that wi < w̄, i =
2, . . . , n, then for any given mission with n phases the total complexity (measured
as an upper bound on the number of Lambert solver calls required for pruning the
search space) can be described by

Lp < γk1 + k2(n− 1)w̄γ + k3(n− 2)w̄γ (3.30)

Denote Ψ = w̄γ and rewrite inequality (3.30) as follows:

Lp < γk1 + k2(n− 1)Ψ + k3(n− 2)Ψ (3.31)

or

Lp < γk1 − k2Ψ− 2k3Ψ + (k2 + k3)Ψn (3.32)

Looking at inequality (3.32), it can clearly be seen that the relationship between
the number of phases in a mission (n) and the upper bound on the number of
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Lambert solutions required is linear. This implies that the algorithm scales well as
more phases are added. The three constants k1, k2 and k3 can be estimated from
experience. For a typical mission with 1 deep space manoeuvre in each phase, typical
values for k1, k2 and k3 are 320, 250, and 550, respectively.

Complexity of the global optimisation stage

Note that the above analysis is only for the pruning stage, so that it excludes the
subsequent global optimisation stage. The complexity of the global optimisation
stage can be defined as follows. Evaluating the whole trajectory with the purpose of
calculating the objective function requires a number of Lambert evaluations which
is upper bounded as follows:

Lf =
n∑

i=1

(di + 1) < (d̄+ 1)n (3.33)

If a population based algorithm with Np individuals is employed over Ni gen-
erations over each solution family located, and the most promising solution family
is optimised by the same algorithm over Ng generations, then the total number of
Lambert calls for the global optimisation stage is upper bounded as follows:

Lg < NpNiS(d̄+ 1)n+NpNg(d̄+ 1)n = (NpNiS +NpNg)(d̄+ 1)n (3.34)

where S is the number of solution families located.

Complexity of pruning and global optimisation

The total complexity of the pruning stage followed by the global optimisation stage,
in terms of the number of Lambert solver calls, is upper bounded as follows

L < γk1 − k2Ψ− 2k3Ψ + (k2 + k3)Ψn+ (NpNiS +NpNg)(d̄+ 1)n (3.35)

Again, it is clear that the complexity grows linearly with the number of phases
when considering both the pruning and the global optimisation stages.

3.2.9 Results

In his section it will be shown how effective this pruning algorithm can be. Three
missions will be described and then pruned and optimised. A grid sampling method
will be compared on a simple mission to illustrate the advantages of pruning.

Earth-Mars (grid sampling comparison)

To illustrate the advantages gained by applying the pruning algorithm a simple one
phase mission from Earth to Mars is examined. The mission consists of a transfer
with a deep space manoeuvre and an insertion manoeuvre at Mars. The mission can
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be characterised by the following 6 decision variables, each of which has an initial
feasible interval:

• t0 ∈ [2000, 3000] MJD2000

• Tof ∈ [150, 450] days

• r ∈ [1.496e8, 2.2794e8] km

• θ ∈ [−π/6, π/6] rad

• φ ∈ [−π/6, π/6] rad

• α ∈ [0.1, 0.9]

An insertion manoeuvre at Mars is specified with radius of pericenter rp = 3950
km, and eccentricity e = 0.98. The impulsive manoeuvres were constrained as
follows:

• ∆vdep ≤ 5 km/s

• ∆vDSM ≤ 2 km/s

• ∆vb ≤ 3 km/s

For the grid sampling, 45 points were taken along the t0 interval, 20 along the
Tof interval, 20 along the r interval, 10 along the θ interval, 10 along the φ interval,
and 10 along the α interval. This gives a total of 18 million points to be sampled,
of which only 19 points were found to be feasible. The grid sampling required 36
million calls to the Lambert solver, and took almost 3.36 hours on an Intel Core 2
Duo 2.0 GHz PC running Matlab 2007a.

The sequential quadratic programming algorithm, as implemented in function
fmincon of Matlab’s optimisation Toolbox was employed for the local optimisation
steps associated with the proposed pruning method. To perform the pruning, 150
random vectors were generated in phase 1 as described in section 3.2.2 (N1 = 150),
and the local optimiser was started from each vector, resulting in 89 feasible vectors
(M1 = 89). The mean shift clustering algorithm was run with a bandwidth value of
230 to find the approximate feasible regions. A total of 116,326 calls to the Lambert
solver where done by the proposed pruning algorithm in this case, and the pruning
took 128 seconds on the same PC. This is only 1.06% of the time spent by the
same PC to perform the grid sampling. The clustering algorithm takes a negligible
amount of time to execute compared with the overall time it takes to perform the
pruning with the proposed method.

Figure 3.2(a) shows the projected bounding boxes found using the proposed
pruning method, while figure 3.2(b) shows the projected points found using the grid
sampling method. Notice that the feasible points obtained by means of grid sampling
are located inside the bounding boxes found by the proposed pruning method. This
has been verified using the numerical values obtained.
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Figure 3.2: (a) Illustration on the located bounding boxes on the t0 − tarr plane for
the estimates of the feasible regions for the Earth-Mars mission The actual bounding
boxes are in six dimensions. (b) Projection on the t0−tarr plane of the feasible points
located by grid sampling in the case of the Earth-Mars mission. The actual points
are in six dimensions
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Notice the difference in computations between grid sampling and the proposed
pruning method, given the amount of feasible vectors found by each method. In-
creasing the sampling resolution to enable the grid sampling method to find more
feasible points would result in even heavier computations.

Earth-Venus-Mars

To further test the proposed pruning method, we have defined an Earth-Venus-Mars
mission with one deep space manoeuvre between Venus and Mars. The problem has
7 decision variables. The initial ranges for all variables are defined below:

• t0 ∈ [36507302] MJD2000

• T (1)
of ∈ [50, 400]

• T (2)
of ∈ [50, 700]

• r ∈ [1.0821e8, 2.2794e8]

• θ ∈ [−π, π]

• φ ∈ [−π/8, π/8]

• α ∈ [0.1, 0.9]

All impulsive manoeuvres were constrained as follows:

• ∆vdep ≤ 5 km/s

• ∆vga ≤ 5 km/s

• ∆vDSM ≤ 2 km/s

• ∆vb ≤ 3 km/s

An insertion manoeuvre at Mars is specified with radius of pericenter rp = 3950
km, and eccentricity e = 0.98.

Figures 3.3(a) and 3.3(b) show the projected bounding boxes for each phase.
These diagrams illustrate how an individual box in the first phase can be related to
an individual box in the second phase to form a solution family. Six solution families
can be identified.

To perform the pruning for each phase, 120 random points were generated in
phase 1 as described in section V (N1 = 120), and the local optimiser was started
from each point. Similarly, 350 random initial points were generated in phase 2
(N2 = 350, 50 points per feasible t

(2)
dep interval, with seven initial feasible intervals

I1, . . . , I6). Four local optimisations from each initial feasible point in phase 2 were
performed (N3 = 4), to evaluate feasibility with respect to the gravity assist ma-
noeuvre (Step 3 of Algorithm 2). After the gravity assist calculations and backward
constraining, 220 feasible vectors were found in phase 1 (Q1 = 220), while 65 vectors
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Figure 3.3: (a) Illustration on the located bounding boxes on the t0 − t(1)
arr plane for

the estimates of the feasible regions for the Earth-Venus phase. The actual bounding
boxes are in six dimensions. (b) Projection on the t

(2)
dep − t

(2)
arr plane of the located

bounding boxes for the estimates of the feasible regions for the Venus-Mars phase.
The actual bounding boxes are in six dimensions. The double headed arrows show
the six solution families that were identified.
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Figure 3.4: Representation of the best trajectory found when Differential Evolution
was applied to the pruned search space
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were left in phase 2 (Q2 = 65). The mean shift clustering algorithm was run with
bandwidth value of 230 and 270 in phases 1 and 2, respectively. A total of 389,805
calls to the Lambert solver were required for the pruning phase (650 s CPU time)

Differential evolution with a population size of 20 individuals and parameter val-
ues F = 0.8 and CR = 0.8 was employed to search for an optimal solution for each of
the six solution families located. The algorithm was initially run for N4 = 200 iter-
ations for each solution family. This was done to select the most promising solution
family. Following this, Differential Evolution was run for N5 = 2000 iterations for
the selected solution family. A total of 192,000 Lambert solver calls were performed
during the optimisation phase (215 s CPU time). The returned result gave the fol-

lowing values for the decision variables: t0 = 4469.9, t
(1)
of = 171.7855, t

(2)
of = 682.4994,

r(2) = 1.7252 × 108, θ(2) = −1.9133 rad, φ(2) = −0.0073 rad, α(2) = 0.5037. The
resulting impulsive manoeuvres were: ∆v

(1)
dep = 2.9743 km/s, ∆v

(1)
ga = 8.547 × 10−5

km/s, ∆v
(2)
DSM = 0.4729 km/s, ∆v

(2)
b = 2.0158 km/s, giving a total ∆v value of

5.4630 km/s. Figure 3.4 shows the corresponding spacecraft trajectory projected on
the plane defined by the Earth’s rotation.

Notice that the tolerance of the Lambert solver was relaxed at 10−6 for the
pruning phase, and tightened at 10−14 for the Differential Evolution optimisation
phase. This was done in order to save computation time, as only an estimate of the
feasible regions is found through the pruning method, and the regions found are not
very sensitive to the tolerance value.

MESSENGER Mission

The MESSENGER spacecraft is set to become the first spacecraft to successfully
orbit Mercury, and will send back the first new pieces of data since the Mariner
10 mission. It was launched from Earth in August 2004. It is due to complete its
mission to Mercury in March 2011. On its way to Mercury it will have completed
one flyby of Earth, two flyby’s of Venus and 3 flyby’s of Mercury. This mission is of
particular interest because of the complexity involved. The mission contains:

1. A launch

2. 6 powered swingbys

3. 7 deep space manoeuvres

4. An orbital insertion manoeuvre

In order to try and replicate the actual mission flown, the model needed to be
updated. The new model allowed for Lambert problem solutions to include multiple
revolutions of a body. In addition to this, both high and low energy transfers can
take place when the number of complete revolutions is > 1. In the test case being
presented here, the integer variables representing the number of revolutions is kept
constant and not optimised. The same is true for the binary variables defining a
high or low energy transfer.
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The MESSENGER mission involves a decision variable in 36 dimensions with
a total of 15 ∆V ’s. The insertion manoeuvre that occurs after the third swingby
of Mercury is defined with a radius of pericenter rp = 2640 km, and eccentricity
e = 0.7396. The constraints imposed on the impulsive manoeuvres are given below:

• ∆vdep ≤ 5 km/s

• ∆v
(1..6)
ga ≤ 2 km/s

• ∆v
(1..7)
DSM ≤ 3 km/s

• ∆vb ≤ 4 km/s

The bounds used for this mission are:

• t0 ∈ [1000, 4000]

• T (1..7)
of ∈ [200, 500]

• r(1) ∈ [1.3464e8, 1.6456e8]

• r(2) ∈ [1.0821e8, 1.4960e8]

• r(3) ∈ [9.739e7, 1.1903e8]

• r(4) ∈ [5.791e7, 1.0821e8]

• r(6..7) ∈ [5.212e7, 6.370e7]

• θ(1..7) ∈ [−π, π]

• φ(1..7) ∈ [−π/6, π/6]

• α(1..7) ∈ [0.1, 0.9]

For this mission the pruning algorithm was used with the following parameters.
Number of randomly generated starts of the local optimiser in the first phase, N1 =
150. Number of randomly generated starts per window in subsequent phases Ni = 80
where i > 1. The maximum number of iterations the local optimiser is allowed
to run for when a swingby is being considered was 450 and 150 when there was
no swingby included. Each feasible point found before a swingby manoeuvre was
allowed a maximum of 3 attempts to find a matching feasible point after the swingby
is included. The best solution found is described in table 3.2

The solution vector produces the impulsive manoeuvres listed in table 3.3. Look-
ing at the results, there is only one constraint violation in the solution. The violation
occurs at the deep space manoeuvre between Venus and Mercury. The size of the
violation is notably small. The 14 remaining impulsive manoeuvres all satisfy the
constraints with ease.

The bounding boxes generated during the first and last pruning phases of the
MESSENGER mission are shown in figures 3.5 and 3.6. The trajectory generated
from the solution vector shown in table 3.2 that produces the results illustrated in
table 3.3 is shown graphically in figure 3.7.
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Figure 3.5: Projection on the t0 − t(1)
arr plane of the located bounding boxes for the

estimates of the feasible regions for phase 1 of the MESSENGER mission. The
actual bounding boxes are in six dimensions
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Figure 3.6: Projection on the t
(7)
dep − t

(7)
arr plane of the located bounding boxes for

the estimates of the feasible regions for phase 7 of the MESSENGER mission. The
actual bounding boxes are in six dimensions
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index t (MJD2000) Tof (days) r (km) θ rad φ rad α
0 1527.3
1 399.9972 1.4993e+8 -3.1117 6.0655e-6 0.4658
2 377.1584 1.3667e+8 -1.4910 0.0176 0.6430
3 177.7119 1.0398e+8 2.2906 6.7708e-4 0.3966
4 171.7616 5.8483e+7 -2.8456 0.0197 0.4707
5 126.5759 6.7573e+7 -1.1223 3.6121e-4 0.5166
6 132.5413 5.2811e+7 -2.2575 -0.0053 0.4979
7 107.1364 6.7171e+7 -1.0448 -6.0022e-5 0.6219

Table 3.2: Decision vector values found after optimizing the pruned MESSENGER
search space.

BepiColombo Mission

The BepiColombo mission is another mission that utilizes the inner planets in order
to reach Mercury. This mission has been slightly simplified in order to work with
the model we are using. The actual mission includes a low thrust arc transfer which
cannot be replicated with this model. Although the mission studied here is inspired
by BepiColombo, the results obtained should not be compared with the original
BepiColombo because of the difference in the sequence. The sequence has also been
reduced to Earth-Earth-Venus-Venus-Mercury. There is a deep space manoeuvre in
each phase giving a 21 dimensional search space. The bounds used for this mission
are:

• t0 ∈ [4000, 8000]

• T (1..4)
of ∈ [100, 800]

• r(1) ∈ [1.3464e8, 1.6456e8]

• r(2) ∈ [1.0821e8, 1.4960e8]

• r(3) ∈ [9.7388e7, 1.1903e8]

• r(4) ∈ [5.7909e7, 1.0821e8]

• θ(1..4) ∈ [−π, π]

• φ(1..4) ∈ [−π/6, π/6]

• α(1..4) ∈ [0.1, 0.9]

Subject to the following constraints:

• ∆vdep ≤ 3 km/s

• ∆v
(1..3)
ga ≤ 3 km/s

• ∆v
(1..4)
DSM ≤ 2 km/s
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Manoeuvre Type Bodies Involved ∆V (km/s) Constraint Violation
1 Launch E 0.127137 No
2 DSM E-E 0.074635 No
3 DSM E-V 2.253777 No
4 DSM V-V 1.621058 No
5 DSM V-Me 3.085997 Yes
6 DSM Me-Me 0.094500 No
7 DSM Me-Me 0.166976 No
8 DSM Me-Me 0.063729 No
9 Swingby E 0.509242 No
10 Swingby V 0.005469 No
11 Swingby V 0.843764 No
12 Swingby Me 1.774886 No
13 Swingby Me 0.015440 No
14 Swingby Me 0.001736 No
15 Insertion V 0.275635 No

Total ∆V 10.913980

Table 3.3: MESSENGER mission’s deep space manoeuvres resulting from the best
solution vector

• ∆vb ≤ 3 km/s

The bounding boxes generated during the first and last pruning phases of the
BepiColombo mission are shown in figures 3.8 and 3.9.

The solution vector is shown below in table 3.4. This solution found gives a total
∆V of 1.195605. A break down of all the impulsive manoeuvres is shown in table
3.5. Figure 3.10 shows the trajectory graphically.

Ideally there should be an insertion manoeuvre at Mercury. There are reasons
for not including such a manoeuvre in this test case. The full BepiColombo mission
contains two further orbits of Mercury with a deep space manoeuvre in each phase.
As the actual mission contained extra phases, it is unknown weather a suitable
parking orbit can be achieved when arriving directly from Venus. The purpose of
studying this mission was to show that the search space could be pruned and a good
solution found, which we have done. Secondly the Earth-Venus-Mars case and the
MESSENGER mission presented above have demonstrated that we can prune and
optimise the search space when such insertions are required.

3.3 Optimal Sequence Selection

3.3.1 Introduction

A pruning algorithm that is able to deal with any specified sequence of planets has
been developed and described in Section 3.2. This section describes how the sequence
of planets can be chosen and optimised when a departure and arrival planet are
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Figure 3.7: Optimised MESSENGER Trajectory

chosen. The algorithm also determines how many deep space manoeuvres (if any)
should be placed in each phase of the mission. A method for inserting retrograde
transfers and multiple revolutions of bodies is also introduced.

The problem of optimizing planetary sequences can be formulated as an integer
optimisation problem. However determining an optimal sequence requires a trajec-
tory to be created and compared to other trajectories from alternate sequences. The
algorithm developed uses integer optimisation techniques to generate candidate se-
quences. The objective function used is the sum of ∆V ’s generated from the pruning
algorithm described in the previous section. This method is henceforth termed as
the hybrid algorithm.

In the next section Differential Evolution and Particle Swarm optimisation are
adapted to solve integer problems and their performances compared. Following
this the hybrid algorithm is described and tested on a selection of mission design
problems.
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Figure 3.8: Projection on the t0 − t(1)
arr plane of the located bounding boxes for the

estimates of the feasible regions for phase 1 of the BepiColombo mission. The actual
bounding boxes are in six dimensions

105



Figure 3.9: Projection on the t
(4)
dep− t

(4)
arr plane of the located bounding boxes for the

estimates of the feasible regions for phase 4 of the BepiColombo mission. The actual
bounding boxes are in six dimensions

106



index t (MJD2000) Tof (days) r (km) θ rad φ rad α
0 7.5983e+003
1 372.3406 1.5203e+008 -2.8955 1.4951e-4 0.5166
2 171.2483 1.2460e+008 1.4827 0.0143 0.4886
3 305.9244 9.7390e+007 -0.6870 -2.6169e-5 0.6110
4 256.0651 9.7822e+007 -0.8699 -0.0730 0.5178

Table 3.4: Decision vector values found after optimizing the pruned BepiColombo
search space.

Manoeuvre Type Bodies Involved ∆V (km/s) Constraint Violation
1 Launch E 0.274406 No
2 DSM E-E 0.263321 No
3 DSM E-V 0.010990 No
4 DSM V-V 0.036779 No
5 DSM V-Me 0.188297 No
6 Swingby E 0.413114 No
7 Swingby V 0.002458 No
8 Swingby V 0.006241 No

Total ∆V 1.195605

Table 3.5: BepiColombo mission’s deep space manoeuvres resulting from the best
solution vector

3.3.2 Non-linear Integer Programming

A simple method for adapting particle swarm optimisation for integer programming
is proposed by Laskari et al in [9]. The method works with real decision variables,
but simply rounds them off to the nearest whole integer value when they are used.
The results obtained by Laskari and his team show that the rounding of the solution
vector produces optimal results. We have applied the same method to Differential
Evolution for comparison. A selection of problems taken from [9] were be used as a
benchmark, they are listed below:
Problem 1. The first problem is a relatively simple polynomial minimization prob-
lem in four dimensions, where the following objective function is minimised:

J1(x) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4 (3.36)

The optimal solution is found at x∗ = [0, 0, 0, 0]T , where J1(x
∗) = 0.

Problem 2. This optimisation problem tests the ability of the optimisers to find a
solution where the objective function takes on real values. The objective function
has the form:

J2(x) = −3803.84−138.08x1−232.92x2 +123.08x2
1 +203.64x2

2 +182.25x1x2 (3.37)

The optimal solution is found at x∗ = [0, 1]T , where J2(x
∗) = −3833.12

Problem 3. The final problem to solve is the most complex. It is a quadratic
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Figure 3.10: Optimised BepiColombo Trajectory

objective function in five dimensions.

J3(x) = −
[

15 27 36 18 12
]
x + xT


35 −20 −10 32 −10
−20 40 −6 −31 32
−10 −6 11 −6 −10

32 −31 −6 38 −20
−10 32 −10 −20 31

x (3.38)

The two best known solutions to J3 are found at x∗ = [0, 11, 22, 16, 6]T and
x∗ = [0, 12, 23, 17, 6]T . Both vectors produce J3(x

∗) = −737.

Each problem has been optimised by Differential Evolution and then by PSO.
To keep the comparisons fair the same population size was used in both algorithms.
Each test was run 20 times and the results averaged. With Differential Evolution,
the cross over rate CR was fixed at 0.8 and the step size F was set to 0.5 for all of
the tests described below. For PSO, the confidence coefficients w and c were fixed
at 0.721348 and 1.193147, respectively.

The benchmark test results are shown in table 3.6. PSO appears to outperform
differential evolution in two of the test cases (Problems 1 and 3), including the most
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Table 3.6: Evaluation of Differential Evolution and PSO for integer programming
problems. P1-P3 correspond to Problems 1 to 3. ’Pop.’ corresponds to the popula-
tion size employed, ’Gen.’ is the average number of generations over twenty runs to
find the known solution to the problem, ’Eval.’ is the average number of objective
function evaluations required to find the solution.

- P1 DE P1 PSO P2 DE P2 PSO P3 DE P3 PSO
Pop. 20 20 20 20 70 20
Gen. 263 72 55 81 384 95
Eval. 6070 1400 930 1730 27210 6320

complex one. For this reason PSO was used as the optimiser of choice for the planet
sequencing problem.

3.3.3 A Hybrid Approach to Planetary Sequence optimisa-
tion

Problem Formulation

A two level approach is used to solve the optimal planet sequencing problem. The top
level is the adapted integer particle swarm optimiser. This generates a vector that
can be broken down into a number of subsections. The first subsection represents
each of the intermediate planets where a swingby manoeuvre will be performed.
The second subsection represents the number of deep space manoeuvres to occur in
that particular phase. By default the top level decision vector contains only these
subsections. However, in some cases it may be necessary to add extra variables to
allow for the presence of retrograde transfers or multiple revolutions of a body.

Once a sequence has been generated by the particle swarm optimiser at the
top level, the corresponding objective function is evaluated the lower level by the
pruning algorithm followed by a global optimisation stage, as described in Section
3.2. In order to improve the time performance of the algorithm any given top level
decision vector is only evaluated once. All the generated sequences are stored for
future comparison.

At the top level, the user must specify the planet to depart from Pdep, the final
destination Pdest, the maximum number of phases allowed n, and the maximum num-
ber of deep space manoeuvres allowed per phase DSMmax. The top level decision
vector is:

X = [P1, P2, . . . , Pn−1, D1, D2, . . . , Dn] (3.39)

To better illustrate this, consider following example. We want to find the optimal
planetary sequence and combination of deep space manoeuvres for an Earth to
Jupiter mission. A maximum of 5 phases are allowed, with no more that 2 deep
space manoeuvres per phase. Set Pdep = 3, Pdest = 5, n = 5 and DSMmax = 2. This
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produces the following decision vector

X = [P1, P2, P3, P4, D1, D2, D3, D4, D5] (3.40)

where P1..4 ∈ [0, 9] and D1..5 ∈ [0, Dmax]. Intuitively it is possible to restrict the
mission to the inner planets only by reducing the upper bound on P to 5. Similarly
one can implement a mission which contains no deep space manoeuvres at all by
setting the upper bound on D to 0.

By allowing the lower bound on the intermediate planet selection to be set to 0
we are able to consider missions with a varying number of phases. This is important
because in general the mission analyst does not know in advance the optimal num-
ber of swingbys needed for a specific mission, and may otherwise have to perform
multiple optimisations. In order to implement this some pre-processing is required.
Before a sequence can be passed to the pruning algorithm the sub-vector P must be
examined using the following simple algorithm.

for i = 1:length(P)

if P(i) == 0

for j = i+1 : length(P)

P(j) = 0

end

end

end

All the zeros are then stripped from P as well as the corresponding number of
elements from the sub-vector D used to define the maximum number of deep space
manoeuvres in a phase.

Algorithm

The complete two level hybrid algorithm is described in this section. A mission
analyst must characterize the mission by pre-selecting a few parameters at the top
level:

• Launch window in MJD2000

• Departure planet, Pdep

• Destination body, Pdest

• Maximum number of phases, n

• Maximum number of DSM’s per phase, Dmax

• PSO swarm size, S

• Generations to run for, N

Once the top level settings have been chosen a few lower level settings need to
be made at the objective function (previously described pruning algorithm) level.
These parameters include
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• Launch, DSM, swingby, insertion constraints

• DSM parameter bounds

• Insertion parameters

• Number of starts of the local optimiser in the first phase

• Number of starts of the local optimiser per window in subsequent phases

The algorithm then executes as described below. When line 12 is reached the
pruning algorithm is called. It is here that the bulk of the processing is carried out.
The notation used is as follows, X represents the vector of particles in the system,
V represents the vector of associated velocities. X∗g corresponds to the best globally
known particle and (X)∗pi is the personal best solution of particle i.

Hybrid Sequence optimisation Algorithm

1. Initialise X uniformly randomly over the search space

2. For each particle vector Xi

3. Round off each element of the particle to nearest whole number

4. end

5. Initialise V uniformly randomly over the search space

6. For each velocity vector Vi

7. Round off each element of the vector to nearest whole number

8. end

9. Repeat

10. count = count + 1

11. For each population vector Xi

12. Ji = prune(Xi)

13. If (Ji < J∗pi)

14. J∗pi = Ji

15. X∗pi = Xi

16. end

17. If (Ji < J∗g )

18. J∗g = Ji
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19. X∗g = Xi

20. end

21. Vi = round{ωVi + c1r1(X
∗
p −Xi) + c1r2(X

∗
g −Xi)}

22. Xi = round(Xi + Vi)

23. Until count == N

Complexity Analysis

Consider equation (3.35), which gives an upper bound on the Lambert evaluations
for the pruning stage followed by the global optimisation stage for a given sequence.
Define

β = γk1 − k2Ψ− 2k3Ψ + (k2 + k3)Ψn+ (NpNiS +NpNg)(d̄+ 1)n (3.41)

as such upper bound on the number of Lambert solver calls (both for pruning and
global optimisation) for the most complex case considered by the upper level algo-
rithm. Now suppose that the upper level algorithm has a a swarm of size Ns and it
is run for Nu generations, then the total number of Lambert’s solutions Ls is upper
bounded as follows:

Ls < NsβNu (3.42)

Note that β grows linearly with the number of phases n, so that the complexity
of the sequence optimisation algorithm will also grow linearly with the number of
phases.

3.3.4 Results

Earth to Mercury

A mission to send a space craft from Earth to Mercury is being considered. A
maximum of 3 phases is allowed with no more than 1 DSM per phase. To aid the
optimiser only planets between Mars and Mercury are valid options for this mission.
A 2000 day launch window is permitted between 3000 and 5000 MJD2000 (19/3/08
- 9/9/13).

The problem is defined by the following parameters:

• Launch window: [3000 5000] MJD2000

• Departure planet Pdep = 3

• Destination Pdest = 1

• Maximum number of phases n = 3
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• Maximum number of DSM’s per phase Dmax = 1

• Retrograde transfers: Not permitted

• Multiple revolutions: Not permitted

• PSO swarm size S = 8

• Generations to run for N = 15

As the swingby planets are not known, the time of flight bounds are implemented
as look up tables. The time of flight bounds were mainly obtained by prior experience
and trial and error. They were also setup to prevent multi-revolution orbits with
only one deep space manoeuvre. The original GASP software was employed to make
sure that suitable trajectories without deep space manoeuvres were accommodated
for. Moreover, the time of flight intervals were kept small to aid the optimisation
process. This mission only considers the planets Mars, Earth, Venus and Mercury,
so the look up tables take the form of two 4× 4 matrices shown below:

tof ≥


Me V E M

Me 50 50 80 100
E 50 50 100 150
V 80 100 50 180
M 100 150 180 50

 (3.43)

tof ≤


Me V E M

Me 300 300 300 350
E 300 350 400 300
V 300 400 400 450
M 300 300 450 400

 (3.44)

The parameters that characterise the deep space manoeuvre are bounded as
usual so that θ ∈ [0, 2π], φ ∈ [−π/6, π/6] and α ∈ [0.1, 0.9]. The parameter r which
defines the distance from the sun that the DSM takes place (in km) is bounded
between the two semi-major axis’ of the planets involved.

The best sequences found are shown in table 3.7. The global optimiser used at
the end of the pruning stage was PSO with a swarm size of 35. Each solution family
found was primarily optimised over 300 generations, the best of which was then
optimised over 1000 generations. The notation used to describe DSM’s in a phase
is given by a string of values between 0 and Dmax. For example a 3 phase mission
with a DSM in the first and third phase only is represented by the string 101.

Looking at table 3.7 the best sequence appears to be E-E-V-Me, this sequence
is present in the top 2 solutions. The difference being the presence of deep space
manoeuvres. Carrying out a more thorough optimisation on the highest ranked
solution involves allowing the optimiser to run for a larger number of generations.
Of the four solution families found by the pruning algorithm for this particular
mission, the low level decision variables for the optimal trajectory found are shown
in table 3.8. The resulting deep space manoeuvres are characterised in table 3.9.
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Rank Sequence DSM ∆V (km/s)
1 E-E-V-Me 110 1.175
2 E-E-V-Me 111 1.746
3 E-E-M-Me 110 2.490
4 E-V-Me 01 2.838

Table 3.7: Highest ranked solutions for the Earth to Mercury sequence optimisation
problem

index t (MJD2000) Tof (days) r (km) θ rad φ rad α
0 4.9977e+003
1 498.4571 1.5150e+8 -1.7949 -1.3601e-4 0.5172
2 460.2628 1.4010e+8 -0.5011 -0.0294 0.5384
3 106.0772

Table 3.8: Low level decision vector values found after optimizing the pruned E-E-
V-Me search space.

The trajectory described by the solution vector from table 3.8 is shown graphi-
cally in figure 3.11.

Earth to Asteroid TW229

Asteroid TW229 was the subject of the first Global Trajectory optimisation Com-
petition (GTOC) run by the ACT. The competition was designed to test global
optimisation techniques on a technically demanding problem. For this reason we
heave used Asteroid TW229 as the subject of this case. It is aimed to find the
optimal sequence to reach the asteroid which minimises the total ∆V . Note that
the objective function used in the GTOC competition was different. The objective
function used in the competition involved maximising the product of the final mass
of the spacecraft and the absolute value of the scalar product of the relative velocity
of the spacecraft with respect to the asteroid, and the heliocentric velocity of the
asteroid.

The following parameters were used to optimise the sequence along with the
standard DSM parameters decribed in the previous section:

• Launch window: [3000 5000] MJD2000

• Departure planet Pdep = 3

• Destination Pdest = 53

• Maximum number of phases n = 4

• Maximum number of DSM’s per phase Dmax = 1

• Retrograde transfers: Not permitted

• Multiple revolutions: Not permitted
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Manoeuvre Type Bodies Involved ∆V (km/s) Constraint Violation
1 Launch E 0.009471 No
2 DSM E-E 0.005112 No
3 DSM E-V 0.006725 No
4 Swingby E 0.615045 No
5 Swingby V 0.001380 No

Total ∆V 0.637734

Table 3.9: E-E-V-Me mission’s deep space manoeuvres resulting from the best low
level solution vector

• PSO swarm size S = 8

• Generations to run for N = 20

Rank Sequence DSM ∆V (km/s)
1 E-E-Ast 10 2.1998
2 E-E-Ast 01 2.7532
3 E-V-Ast 10 4.9765
4 E-E-Ast 11 5.0281
5 E-A 1 8.5676
6 E-V-E-Ast 110 14.4558
7 E-V-J-Ast 110 15.4633

Table 3.10: Highest ranked solutions for the Earth to Asteroid sequence optimisation
problem

The solution vector for the highest ranked solution gives the following values
t0 = 4723.9, T

(1)
of = 217.7497, r(1) = 1.5158e+ 8, θ(1) = 2.9717, φ(1) = −1.0870e− 4,

α(1) = 0.7837 and T
(2)
of = 676.2973. This produces a launch velocity of 0.020716

km/s, the DSM in the resonant phase has a ∆V = 0.034745 km/s and swingby
∆V = 2.144334. The trajectory is show in figure 3.12.

Another interesting trajectory is the solution ranked third. This trajectory is
plotted in figure 3.13 and described by the decision vector t0 = 4266.6, T

(1)
of =

413.2210, r(1) = 1.1093e + 8, θ(1) = −1.7980, φ(1) = −0.0536, α(1) = 0.4398 and

T
(2)
of = 403.4336. The associated ∆V ’s are as follows; Launch = 3.762199 km/s,

∆V
(1)
DSM = 0.684771 and ∆V

(1)
ga = 0.750823.

3.4 Summary

In this part of the report a new method is presented for pruning the search space for
the optimisation of multiple gravity assist trajectories with deep space manoeuvres
and powered swingbys. The proposed pruning method extends the original GASP
algorithm and samples each phase of the mission using constrained local optimisa-
tion, while a clustering technique is used to locate bounding boxes for the feasible
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Figure 3.11: Earth-Earth-Venus-Mercury trajectory

regions of the search space. Furthermore, it has been shown that the complexity of
the pruning algorithm followed by a global optimisation stage grows linearly with
the number of phases present in the mission.

A two level algorithm for selecting discrete elements of a mission, such as the
intermediate planetary sequence (given departure and arrival bodies), the number
of deep space manoeuvres in each phase, and the presence of retrograde or multi-
revolution phases. The upper level algorithm optimises the integer variables, and
the use of a special version of Particle Swarm Optimisation is proposed for this
purpose. At the lower level, each mission specified by the upper level is evaluated
by a pruning stage followed by a global optimisation stage.

It has been shown that the complexity of the two level algorithm grows linearly
with the maximum number of phases considered. However, given the CPU intensive
nature of the lower level algorithm, the amount of computations for the sequence
optimisation in realistic missions can be substantial. Depending on the mission and
the parameters chosen the computations of the two level algorithm may take from
several hours to a few days to complete.

Both the pruning method and the sequence optimisation technique have been
tested with relevant case studies.
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Figure 3.12: Earth-Earth-Asteroid trajectory

Figure 3.13: Earth-Venus-Asteroid trajectory
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