Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Automatic MGA trajectory planning with a modified ant colony optimization algorithm

Ceriotti, M. and Vasile, M. (2009) Automatic MGA trajectory planning with a modified ant colony optimization algorithm. In: 21st International Space Flight Dynamics Symposium, ISSFD 2009, 2009-09-28 - 2009-10-02.

[img]
Preview
PDF
Ceriotti_M_strathprints_Automatic_MGA_trajectory_planning_with_a_modified_Ant_Colony_Optimization_algorithm.pdf
Preprint

Download (378kB) | Preview

Abstract

This paper assesses the problem of designing multiple gravity assist (MGA) trajectories, including the sequence of planetary encounters. The problem is treated as planning and scheduling of events, such that the original mixed combinatorial-continuous problem is discretised and converted into a purely discrete problem with a finite number of states. We propose the use of a two-dimensional trajectory model in which pairs of celestial bodies are connected by transfer arcs containing one deep-space manoeuvre. A modified Ant Colony Optimisation (ACO) algorithm is then used to look for the optimal solutions. This approach was applied to the design of optimal transfers to Saturn and to Mercury, and a comparison against standard genetic algorithm based optimisers shows its effectiveness.