
This version is available at https://strathprints.strath.ac.uk/19801/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
This Issue is Dedicated to
Professor Peter G. Waterman
INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2007 subscription price: US$1,395 (Print, ISSN# 1934-578X); US$1,095 (Web edition, ISSN# 1555-9475); US$1,795 (Print + single site online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.
Cassane diterpenoids from *Lonchocarpus laxiflorus*

John O. Igoli\(^a,\) *, Samuel O. Onyiriuka\(^b\), Matthias C. Letzel\(^c\), Martin N. Nwaji\(^b\) and Alexander I. Gray\(^d\)

\(^a\)Department of Chemistry, University of Agriculture, P. M. B. 2373, Makurdi, Nigeria
\(^b\)Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
\(^c\)Fakultät für Chemie, Organische Chemie I, Universität Bielefeld, 33501 Bielefeld, Germany
\(^d\)Natural Products Research Group, Division of Pharmaceutical Sciences, SIPBS, University of Strathclyde, 27 Taylor Street, Glasgow G4 ONR, UK

igolij@yahoo.com

Received: August 28th, 2007; Accepted: October 3rd, 2007

Dedicated to Professor Peter G Waterman, one of the pioneers of phytochemical research.

Phytochemical investigation of the stem bark of *Lonchocarpus laxiflorus* yielded three new cassane diterpenoids, lonchocassane A [cassa-13 (14), 15-dien-18, 20-dioic acid], lonchocassane B [cassa-13 (14), 15-dien-20-oxo-18-oic acid] and lonchocassane C [cassa-13 (14), 15-dien-20-carboxyl-18-methylcarboxylate]. The known compounds betulinic acid, betulinic acid acetate, betulin, lupeol, lupenone, trilinoleate, hexacosanyl and triacontanyl caffeates, 4-hydroxy-4-methylpentan-2-one, \(\beta\)-sitosterol, \(\beta\)-sitosterol acetate and stigmasterol were also isolated. The structures and identities of the compounds were established by spectroscopic methods.

Keywords: *Lonchocarpus laxiflorus*, Fabaceae, cassane diterpenoids, lonchocassanes, lupane triterpenoids, caffeic acid esters.

Lonchocarpus laxiflorus Guill & Perr. is one of the six *Lonchocarpus* species growing in Nigeria [1], some of which are extensively used in traditional medicine [2,3]. The Igede people of Benue State, Nigeria, use the young stems and branches of *L. laxiflorus* for dental care as chewing sticks and the bark as a component of an arrow poison [4]. The isoflavonoids lonchocarpan and laxifloran and the pterocarpinoids, philenopteran and 9-\(O\)-methylphilenopteran were previously isolated from the roots of the plant [2]. The crude methanol, chloroform and \(n\)-hexane extracts of the plant have shown a broad spectrum antimicrobial activity against several strains of bacteria and fungi. Efforts to isolate and characterize the constituents of these antimicrobial crude extracts yielded the new cassane type diterpenoids designated as lonchocassane A (1), lonchocassane B (2) and lonchocassane C (3), together with the known compounds betulinic acid (4) [5-8], betulinic acid acetate (5) [7,9], betulin (6) [9,10], lupeol (7) [3,9], lupenone (8) [11], hexacosanyl and triacontanyl caffeates (9a, 9b) [12,13], trilinoleate (10), 4-hydroxy-4-methylpentan-2-one (11), \(\beta\)-sitosterol (12), \(\beta\)-sitosterol acetate (13) and stigmasterol (14). We now describe the structure determination of the new cassane diterpenoids.

Lonchocassane A (1) was obtained from the \(n\)-hexane, ethyl acetate (EtOAc) and methanol (MeOH) extracts by column chromatography (CC),
and the compound was purified by preparative TLC. The molecular mass of the compound was found to be 332 from EIMS and ESI-MS analyses. The HREIMS revealed the molecular formula C_{20}H_{39}O_{4} with a double bond equivalent (DBE) of seven. The UV spectrum of I (λ_max 242 nm) was indicative of a conjugated diene. Its IR spectrum showed carbonyl absorption at 1696 cm^{-1}, characteristic of a free carboxylic acid, and an olefinic absorption at 1458 cm^{-1}. The presence of an ethylene side chain was evident in the 1H NMR spectrum from the peaks at δ 6.91 (1H, dd, J = 17.0 Hz and 11.0 Hz), 5.17 (1H, d, J = 17.0 Hz) and 5.01 (1H, d, J = 11.0 Hz). Only two methyl groups were observed at δ 1.62 and 1.68, while methylene and methine protons were observed between δ 1.03 and 2.96. The J-modulated 13C NMR spectrum indicated two carboxylic acid carbons at δ 178.0 and 181.5, two olefinic C = C carbons at δ 128.9 and 137.7, and an olefinic CH and CH_{2} at 136.5 and 111.5, respectively. The balance of the carbons was made up of two methyl groups, seven methylenes, three methines and two saturated quarternary carbons. The molecular formula of the compound is typical of a non aromatic diterpenoid. This is supported by the absence of any aromatic proton and carbon signals in its NMR spectra (Table 1). The conjugated olefinic group C=C-CH=CH_{2} and the two carboxylic acid groups account for a DBE of four, suggesting that the compound could be a tricyclic diterpene. Out of the most common tricyclic diterpene skeletons, only cassanes and iso-cassanes can accommodate an ethylene side chain and a conjugated double bond system involving this side chain. Using 2D NMR experiments (including 1H-1H COSY, NOESY, HMQC/ HC-COBIDE and HMBC) (Table 2) the structure was deduced as the cassane diacid (1).

Lonchocassane B (2) and lonchocassane C (3) were obtained as a CC fraction from the n-hexane and EtOAc extracts, and purified by recrystallization. The same structural arguments could be adduced for compound 2 as its 1H, 13C and 2D NMR spectra were similar to those of 1, with slight changes in the resonances for H-17 and H-19 in 2, and the significant change in the resonance for C-20, which shifted to δ 207.5 (CHO). The 2D NMR spectrum (Table 2) showed a strong correlation, observed in its HMBC, between the 19-methyl and C-18 (COOH), indicating they were geminal and, therefore, the aldehyde must be at position C-20. The relative stereochemistry of the chiral centers in this compound, determined from the nOe interactions observed in the NOESY spectrum of 2, is depicted in Figure 1.

The 1H, 13C and 2D NMR spectra of lonchocassane C (3) were also similar to those of compounds 1 and 2, with slight changes in the resonances for H-17 and H-19. In addition, the resonance for C-18 shifted to δ 178.6 (COOCH_{3}) and a new signal (at δ_{C} 3.67 and δ_{H} 52.1), corresponding to an OCH_{3}, was evident in the NMR spectra of 3. This was further supported by two carbonyl absorptions at 1717 (C=O, ester) and 1687 cm^{-1} (C=O, acid) in the IR spectrum. The compound could have been considered as an artifact from the extraction process, but MeOH was not used at any stage in the extraction, isolation or purification of compound 3. Therefore, it cannot be a methanolysis product. Moreover, only compound 1 was detected and isolated from the MeOH extract. The strong correlation between the 19-methyl and the -COOCH_{3} observed in the HMBC spectrum (Table 2) indicated that they were geminal. Therefore, the ester group must be at position C-18.

The NOESY spectra of 1-3 confirmed their stereostructures by displaying the nOe interactions between protons (Table 2), and revealed that all three compounds (1-3) have their 19 methyl groups at an axial position. These structures were further confirmed by comparison of their spectral data with those reported for similar compounds or moieties [14-19].

The lupane triterpenoids were isolated variously from the crude extracts. Betulinic acid (4) was obtained from all the crude extracts, while betulin (5), betulinic acid acetate (6), lupeol (7), and lupenone (8) were obtained from the n-hexane extracts only. Their physical and spectroscopic data (mp, HREIMS, EIMS, IR, 1H and 13C NMR, coupled with 2D NMR experiments) confirmed their structures when compared with literature reports [5-11, 20].
An n-pentane-dichloromethane extract of the plant material gave compound 6 and the caffeic acid esters 9a and 9b as a mixture. Exact mass measurement (HREIMS) of the molecular ion of compound 9a gave the molecular formula C_{33}H_{40}O_{4}. The compound gave a carbonyl absorption at 1686 cm\(^{-1}\) indicative of an ester. The presence of an aromatic ring was indicated in its \(^{13}\)C and \(^{1}H\) NMR spectra, while the long alkyl chain was also inferred from its EIMS and \(^{1}H\) NMR spectrum. The difference of 56 mass units resulting from four additional CH\(_2\)-units indicated that 9a and 9b were analogues. The isolation of the esters 9a and 9b as a mixture has been previously reported [12]. The spectroscopic data obtained for the compounds were in agreement with those reported [12,13]. The triglyceride, trilinoleate (10), was obtained as a yellowish oil from the n-hexane extract and the 4-hydroxypentan-2-one (11) was also obtained as an oil from the MeOH extract, while the steroids \(\beta\)-sitosterol (12), \(\beta\)-sitosterol acetate (13) and stigmasterol (14) were obtained from all the crude extracts as crystalline white solids. Their \(^{1}H\) and \(^{13}\)C NMR spectra confirmed their structures when compared with authentic samples and literature/database (Aldrich NMR Lib. 1992, NIST 2006 and SDBS, 2006) reports.
Experimental

General: Melting points (uncorr.) were taken on a Buchi B-540 melting point apparatus. The 1H NMR and 13C NMR spectra were obtained using a Bruker AMX 400 and/or DRX 500 spectrometers with CDCl$_3$ or C$_6$D$_{6}$ as solvent and TMS as internal standard. ESIMS were run using a Bruker Esquire 3000, while exact masses were measured using an Autospec X magnetic sector mass spectrometer with EBE geometry (Vacuum Generators, now Micromass, Manchester, UK). IR and UV/VIS spectra were obtained using Perkin-Elmer 841 and Perkin – Elmer UV/VIS – spectrometer Lambda 40, respectively. Column chromatographic separations were performed in glass columns using silica gel MN-60 (Macherey-Nagel GmbH & Co. KG) and spots on tlc were visualized using vanillin-H$_2$SO$_4$ reagent. Optical rotations were determined using a Perkin Elmer Polarimeter 341. Column chromatography (CC) was performed on silica gel.

Plant material: The stem bark of *Lonchocarpus laxiflorus* Guill & Perr. was collected in July 2002 and 2006 from mature trees growing in Igwoke in the Ukwkwu locality of Benue State, Nigeria. The plant was identified by the Forestry and Wildlife Department of the University of Agriculture, Makurdi, where a voucher specimen was deposited. It was also authenticated at the Royal Botanical Garden Edinburgh, Herbarium reference: Family 194 and Genus 249.

Extraction and isolation: The dried ground bark (1 kg) was Soxhlet-extracted, successively, using n-hexane, EtOAc and MeOH ((2.5 L each). The solvents were removed to obtain 5.92 g, 3.06 g and 138.0 g of the crude extracts, respectively. CC of the n-hexane and EtOAc extracts, eluting with n-hexane, EtOAc in n-hexane and finally MeOH in EtOAc yielded 10 (142.0 mg), 8 (44.3 mg), 7 (12.8 mg), 6 (13.3 mg), 5 (10.3 mg), 12 (10.5 mg), 13 (3.9 mg), 14 (11.6 mg) 3 (96.0 mg), 2 (74.0 mg), 4 (127.5 mg) and 1 (56.0 mg).

A second batch of the plant material (0.25 kg) was extracted with n-pentane-dichloromethane (1:1) and thereafter with MeOH to obtain 1.73 g of the n-pentane-dichloromethane extract and 25.85 g of the methanol extract. The n-pentane-dichloromethane extract, on addition of n-pentane, gave a solid (0.371 g). This was subjected to CC and eluted with n-pentane, ethyl formate in n-pentane and then ethyl formate to obtain 5 (12.0 mg), 9a and 9b (41.0 mg).

The MeOH extract (25.85 g) was re-dissolved in MeOH (300 mL) and extracted continuously with n-pentane to give an oily paste (0.561 g), which was subjected to CC and eluted with n-pentane-dichloromethane (1:1), dichloromethane, and MeOH in dichloromethane to obtain 11 (120 mg), 4 (23.0 mg) and 1 (23.8 mg).

Although the plant belongs to the family Fabaceae, species of which frequently yields flavonoids of a wide range of structural types [21,22], surprisingly no flavonoid could be found in this plant. Cassane diterpenoids have been shown to possess antibacterial, antifungal and antioxidant activities [19,23].

Lonchocassane A (1)

[Cassa-13 (14), 15-diene-18, 20-dioic Acid]

White needles obtained from MeOH-chloroform. MP: 174-176°C.

$\alpha$$_D$$_{20}^0$: -30º (c 0.10, MeOH).

R$_y$: 0.46 (EtOAc/n-hexane (4:6).

IR $\nu$$_{\text{max}}$KBr : 2948 (C-H), 1696 (C=O acid), 1629 (C=O), 1458 (C=C), 1272, 1224 (C-O), 895 (C-H cyclohexane) cm$^{-1}$.

UV $\lambda$$_{\text{max}}$MeOH (log ε): 242 (8.7) nm.

1H NMR (400 MHz, C$_6$D$_{6}$N): Table 1.

13C NMR (100 MHz, C$_6$D$_{6}$N): Table 1.

ESIMS m/z (rel. int.): 332 [M$^+$] (40), 286 [M-HCOOH]$^+$ (100), 241 [M-2HCOOH]$^+$ (39), 190 (21), 147 (42), 133 (46), 91 (63), 55 (58).

ESIMS (neg.) m/z (rel. int.): 331.19 [M-H]$^-$ (100).

ESIMS (pos.) m/z (rel. int.) 355.15 [M+Na]$^+$ (50).

HREIMS: m/z 332.1993 [M$^+$], C$_{20}$H$_{28}$O$_4$ requires 332.1988.

Lonchocassane B (2)

[Cassa-13 (14), 15-diene-20-oxo-18-oic acid]

White needles obtained from MeOH-chloroform. MP: 168-170°C.

$\alpha$$_D$$_{20}^0$: -44º (c 0.10, MeOH).

R$_y$: 0.68 (EtOAc/n-hexane (4:6).

IR $\nu$$_{\text{max}}$KBr : 2931 (C-H), 2863 (C-H aldehyde), 1693 (C=O), 1629 (C=C), 1459 (C=C), 1286, 1201 (C-O), 895 (C-H cyclohexane) cm$^{-1}$.

UV $\lambda$$_{\text{max}}$MeOH (log ε): 244 (12.5) nm.

1H NMR (400 MHz, C$_6$D$_{6}$N): Table 1.

13C NMR (100 MHz, C$_6$D$_{6}$N): Table 1.

ESIMS m/z (rel. int.): 316 [M$^+$](11), 298 [M-H$_2$O]$^+$ (15), 148 (35), 147 (45), 135 (50), 134 (100), 119 (29), 55 (18).
Constituents from Lonchocarpus laxiflorus

ESIMS (neg.) m/z (rel. int.): 351.10 [M+Cl]⁻ (100). ESIMS (pos.) m/z (rel. int.) 317.10 [M+H]⁺ (100). HREIMS m/z 317.2111 [M+H]⁺, C₂₀H₂₉O₃ requires 317.2117

Lonchocassane C (3) [Cassa-13 (14), 15-diene-20-carboxylic-18-methyl-carboxylate]

White crystals obtained from MeOH-chloroform. MP: 133-135°C. [α]D²⁰ : -47° (c 0.10, MeOH).

IR νmax KBr: 2967 (C-H), 1717 (C=O ester), 1687(C=O acid), 1627 (C=C), 1461 (C=C), 1247, 1158 (C-O), 901 (C-H cyclohexane) cm⁻¹.

UV λmax MeOH (log ε): 242 (10.9) nm.

1H NMR (400 MHz, C₆D₅N): Table 1. 13C NMR (100 MHz, C₆D₅N): Table 1. EIMS m/z (rel. int.): 346 [M]⁺(20), 300 [M-HCOOH]⁻(100), 286 [M-HCOOCH₃]⁻(13), 240 [M-HCOOH- HCOOCH₃]⁻(21), 171 (14), 134 (20), 91 (26), 79 (20).

ESIMS (neg.) m/z (rel. int.): 345.82 [M-H]⁻ (25). HREIMS m/z 346.2145 [M]⁺, C₁₁H₁₈O₄ requires 346.2144.

Acknowledgments - Igoli J.O is grateful to DAAD for a study fellowship at the Universität Bielefeld Germany, IFS and OPCW grant no.F/4028-1, for a research visit to the University of Strathclyde, Glasgow, NAPRALERT and SDBS for the use of their database.

References

A Method of Selecting Plants with Anti-inflammatory Potential for Pharmacological Study
G. David Lin, Rachel W. Li, Stephen P. Myers and David N. Leach

Review / Account
Recent Advances of Biologically Active Substances from the Marchantiophyta
Yoshinori Asakawa

Non-Protein Amino Acids: A Review of the Biosynthesis and Taxonomic Significance
E. Arthur Bell (the late), Alison A. Watson and Robert J. Nash
<table>
<thead>
<tr>
<th>Original paper</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Novel Sesquiterpene from Pulicaria crispa (Forssk.) Oliv.</td>
<td>1</td>
</tr>
<tr>
<td>Michael Stavri, Koyippally T. Mathew and Simon Gibbons</td>
<td></td>
</tr>
<tr>
<td>Cassane diterpenoids from Lonchocarpus laxiflorus</td>
<td>5</td>
</tr>
<tr>
<td>John O. Igoli, Samuel O. Onyiriuka, Matthias C. Letzel, Martin N. Nwaji and Alexander I. Gray</td>
<td></td>
</tr>
<tr>
<td>COX-2 Inhibitory Activity of Cafestol and Analogs from Coffee Beans</td>
<td>11</td>
</tr>
<tr>
<td>Ilias Muhammad, Satoshi Takamatsu, Jamal Mustafa, Shabana I. Khan, Ikhlas A. Khan, Volodymyr Samoylenko, Jaber S. Mossa, Farouk S. El-Feraly and D. Chuck Dunbar</td>
<td></td>
</tr>
<tr>
<td>Antibacterial Diterpenes from the Roots of Ceriops tagal</td>
<td>17</td>
</tr>
<tr>
<td>Musa Chacha, Renameditswe Mapitse, Anthony J. Afolayan and Runner R. T. Majinda</td>
<td></td>
</tr>
<tr>
<td>Boswellic Acids with Acetylcholinesterase Inhibitory Properties from Frankincense</td>
<td>21</td>
</tr>
<tr>
<td>Masahiro Ota and Peter J. Houghton</td>
<td></td>
</tr>
<tr>
<td>Synthesis of Pregnenolone and Methyl Lithocholate Oxalate Derivatives</td>
<td>27</td>
</tr>
<tr>
<td>Lutfun Nahar, Satyajit D. Sarker and Alan B. Turner</td>
<td></td>
</tr>
<tr>
<td>Annona muricata (Graviola): Toxic or Therapeutic**</td>
<td>31</td>
</tr>
<tr>
<td>Two New Alkylated Piperidine Alkaloids from Western Honey Mesquite:</td>
<td>35</td>
</tr>
<tr>
<td>Prospis glandulosa Torr. var. torreyana</td>
<td></td>
</tr>
<tr>
<td>Volodymyr Samoylenko, D. Chuck Dunbar, Melissa R. Jacob, Vaishali C. Joshi, Mohammad K. Ashfaq and Ilias Muhammad</td>
<td></td>
</tr>
<tr>
<td>Selective Metabolism of Glycosidase Inhibitors by a Specialized Moth Feeding on Hyacinthoides non-scripta Flowers</td>
<td>41</td>
</tr>
<tr>
<td>Alison A. Watson, Ana L. Winters, Sarah A. Corbet, Catherine Tiley and Robert J. Nash</td>
<td></td>
</tr>
<tr>
<td>Antimicrobial Activities of Alkaloids and Lignans from Zanthoxylum budrunga</td>
<td>45</td>
</tr>
<tr>
<td>M. Mukhlesur Rahman, Alexander I. Gray, Proma Khondkar and M. Anwarul Islam</td>
<td></td>
</tr>
<tr>
<td>A Pyranochalcone and Preyllavonanones from Tephrosia pulcherrima (Baker) Drumm</td>
<td>49</td>
</tr>
<tr>
<td>Seru Ganapaty, GuttulaV.K. Srilakshmi, Steve T. Pannakal and Hartmut Laatsch</td>
<td></td>
</tr>
<tr>
<td>Phenolic Glycosides from Phlomis lanceolata (Lamiaceae)</td>
<td>53</td>
</tr>
<tr>
<td>Hossein Nazemiye, Abbas Delazar, Mohammed-Ali Ghahramani, Amir-Hossein Talebpour, Lutfun Nahar and Satyajit D. Sarker</td>
<td></td>
</tr>
<tr>
<td>Bisresorcinols and Arbutin Derivatives from Grevillea banksii R. Br.</td>
<td>57</td>
</tr>
<tr>
<td>Hao Wang, David Leach, Michael C. Thomas, Stephen J. Blanksby, Paul I. Forster and Peter G. Waterman</td>
<td></td>
</tr>
<tr>
<td>Antioxidant and Membrane Stabilizing Properties of the Flowering Tops of Anthocephalus cadamba</td>
<td>65</td>
</tr>
<tr>
<td>M. Ashraful Alam, Abdul Ghani, Nusrat Subhan, M. Mostafizur Rahman, M. Shamsul Haque, Muntasir M. Majumder, M. Ehsanul H. Majumder, Raushan A. Akter, Lutfun Nahar and Satyajit D. Sarker</td>
<td></td>
</tr>
</tbody>
</table>