Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Optimal long-term design, rehabilitation and upgrading of water distribution networks

Tanyimboh, T. and Kalungi, P. (2008) Optimal long-term design, rehabilitation and upgrading of water distribution networks. Engineering Optimization, 40 (7). pp. 637-654. ISSN 0305-215X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Given a limited budget, the choice of the best water distribution network upgrading strategy is a complex optimization problem. A model for the optimal long-term design and upgrading of new and existing water distribution networks is presented. A key strength of the methodology is the use of maximum entropy flows, which reduces the size of the problem and enables the application of linear programming for pipe size optimization. It also ensures the reliability level is high. The capital and maintenance costs and hydraulic performance are considered simultaneously for a predefined design horizon. The timing of upgrading over the entire planning horizon is obtained by dynamic programming. The deterioration over time of the structural integrity and hydraulic capacity of every pipe are explicitly considered. The upgrading options considered include pipe paralleling and replacement. The effectiveness of the model is demonstrated using the water supply network of Wobulenzi town in Uganda.