Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Weibel instabilities in dense quantum plasmas

Tsintsadze, L. and Shukla, P.K. (2008) Weibel instabilities in dense quantum plasmas. Journal of Plasma Physics, 74. pp. 431-436. ISSN 0022-3778

[img] PDF (strathprints19574.pdf)
strathprints19574.pdf
Restricted to Registered users only

Download (91kB) | Request a copy from the Strathclyde author

Abstract

The quantum effect on the Weibel instability in an unmagnetized plasma is presented. Our analysis shows that the quantum effect tends to stabilize the Weibel instability in the hydrodynamic regime, whereas it produces a new oscillatory instability in the kinetic regime. A novel effect called the quantum damping, which is associated with the Landau damping, is disclosed. The new quantum Weibel instability may be responsible for the generation of non-stationary magnetic fields in compact astrophysical objects as well as in the forthcoming intense laser-solid density plasma interaction experiments.