Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

3d electron fluid turbulence at nanoscales in dense plasmas

Shaikh, Dastgeer and Shukla, P K (2008) 3d electron fluid turbulence at nanoscales in dense plasmas. New Journal of Physics, 10. ISSN 1367-2630

[img]
Preview
Text (Shaikh-Shukla-NJP-2008-3d-electron-fluid-turbulence-at-nanoscales-in-dense-plasmas)
Shaikh_Shukla_NJP_2008_3d_electron_fluid_turbulence_at_nanoscales_in_dense_plasmas.pdf - Final Published Version
License: Creative Commons Attribution-NonCommercial-ShareAlike 3.0 logo

Download (952kB) | Preview

Abstract

We have performed three-dimensional (3D) nonlinear fluid simulations of electron fluid turbulence at nanoscales in an unmagnetized warm dense plasma in which mode coupling between wave function and electrostatic (ES) potential associated with underlying electron plasma oscillations (EPOs) lead to nonlinear cascades in inertial range. While the wave function cascades towards smaller length scales, ES potential follows an inverse cascade. We find from our simulations that the quantum diffraction effect associated with a Bohm potential plays a critical role in determining the inertial range turbulent spectrum and the subsequent transport level exhibited by the 3D EPOs.