Picture of satellite hovering above Earth

Open Access research exploring new frontiers in aerospace engineering...

Strathprints makes available Open Access scholarly outputs by the Department of Mechanical & Aerospace Engineering at Strathclyde, which includes an emphasis on air and space research. The Advanced Space Concepts Laboratory (ASCL), the Future Air-Space Transportation Technology Laboratory (FASTTlab) and the Intelligent Computational Engineering Laboratory (ICElab) specialise in this work.

The ASCL undertakes frontier research on visionary space systems, delivering radically new approaches to space systems engineering. Meanwhile, FASTTlab seeks to revolutionise the global air-space transportation systems and infrastructure. ICElab develops advanced research on artificial and computational intelligence techniques with particular focus on optimisation, optimal control, uncertainty-based multidisciplinary design optimisation and machine learning applied to the design and control of complex engineering systems.

Learn more and explore the Open Access research by ASCL, FASTTlab and ICElab. Or, explore all of Strathclyde's Open Access research...

3d electron fluid turbulence at nanoscales in dense plasmas

Shaikh, Dastgeer and Shukla, P K (2008) 3d electron fluid turbulence at nanoscales in dense plasmas. New Journal of Physics, 10. ISSN 1367-2630

[img]
Preview
Text (Shaikh-Shukla-NJP-2008-3d-electron-fluid-turbulence-at-nanoscales-in-dense-plasmas)
Shaikh_Shukla_NJP_2008_3d_electron_fluid_turbulence_at_nanoscales_in_dense_plasmas.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-ShareAlike 3.0 logo

Download (952kB) | Preview

Abstract

We have performed three-dimensional (3D) nonlinear fluid simulations of electron fluid turbulence at nanoscales in an unmagnetized warm dense plasma in which mode coupling between wave function and electrostatic (ES) potential associated with underlying electron plasma oscillations (EPOs) lead to nonlinear cascades in inertial range. While the wave function cascades towards smaller length scales, ES potential follows an inverse cascade. We find from our simulations that the quantum diffraction effect associated with a Bohm potential plays a critical role in determining the inertial range turbulent spectrum and the subsequent transport level exhibited by the 3D EPOs.