3d electron fluid turbulence at nanoscales in dense plasmas

Shaikh, Dastgeer and Shukla, P K (2008) 3d electron fluid turbulence at nanoscales in dense plasmas. New Journal of Physics, 10. 083007. ISSN 1367-2630

[thumbnail of Shaikh-Shukla-NJP-2008-3d-electron-fluid-turbulence-at-nanoscales-in-dense-plasmas]
Preview
Text (Shaikh-Shukla-NJP-2008-3d-electron-fluid-turbulence-at-nanoscales-in-dense-plasmas)
Shaikh_Shukla_NJP_2008_3d_electron_fluid_turbulence_at_nanoscales_in_dense_plasmas.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-ShareAlike 3.0 logo

Download (952kB)| Preview

    Abstract

    We have performed three-dimensional (3D) nonlinear fluid simulations of electron fluid turbulence at nanoscales in an unmagnetized warm dense plasma in which mode coupling between wave function and electrostatic (ES) potential associated with underlying electron plasma oscillations (EPOs) lead to nonlinear cascades in inertial range. While the wave function cascades towards smaller length scales, ES potential follows an inverse cascade. We find from our simulations that the quantum diffraction effect associated with a Bohm potential plays a critical role in determining the inertial range turbulent spectrum and the subsequent transport level exhibited by the 3D EPOs.