Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

The quantum free-electron laser

Bonifacio, R. and Piovella, N. and Cola, M.M. and Volpe, L. and Schiavi, A. and Robb, G.R.M. (2008) The quantum free-electron laser. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 593 (1-2). pp. 69-74. ISSN 0168-9002

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

A Free-Electron Laser (FEL) operating in the quantum regime can provide a compact and monochromatic X-ray source. Here we review the basic principles of a high-gain quantum FEL starting from noise, with special emphasis on the self-amplified spontaneous emission (SASE) mode operation. In the first part, the full quantum theory of the N-particle and single-radiation-mode FEL Hamiltonian is presented. Quantum effects such as cooperative gain, discrete spectrum and line narrowing are described, both in the multi-particle and in the second quantization formalism. In the second part, propagation effects (i.e. slippage) are described and the main features of the quantum SASE regime are discussed. The broad and spiky radiation spectrum observed in the classical SASE reduces in the quantum regime to a series of narrow lines, associated to sequential transitions between adjacent momentum states. A simple interpretation of the discrete nature of the spectrum and of the line width of the single spike observed in the quantum regime is presented.