Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Characteristics of cavity solitons and drifting excitations in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback

Tanguy, Y. and Radwell, N. and Ackemann, T. and Jager, R. (2008) Characteristics of cavity solitons and drifting excitations in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback. Physical Review A, 78 (2). 023810-1. ISSN 1094-1622

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The properties of cavity solitons in a vertical-cavity surface-emitting laser with frequency-selective feedback from a diffraction grating are characterized and analyzed. The solitons have a typical width of 10 m and a linewidth of down to 10 MHz, i.e., they represent small microlasers. Their equilibrium spatial location arises from an interplay of spatial inhomogeneities in the device and a grating-induced force which depends on detuning. Transients involve the passage through a self-pulsing state. Due to the grating-induced advection, drifting excitations are found, which might have applications in all-optical delay lines though their solitonic nature remains to be established. (Taken from : http://pra.aps.org/pdf/PRA/v78/i2/e023810)