Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Landau model for polymer-stabilized ferroelectric liquid crystals: experiment and theory

Archer, P. and Dierking, I. and Osipov, M.A. (2008) Landau model for polymer-stabilized ferroelectric liquid crystals: experiment and theory. Physical Review E, 78 (5). 051703-051703. ISSN 1539-3755

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The interaction between a phase separated polymer network and a liquid crystal was studied across the smectic-A* (Sm-A*) to smectic-C* (Sm-C*) phase transition of a polymer-stabilized ferroelectric liquid crystal polymerized in the Sm-A* phase. Using precise measurements of the tilt angle and the spontaneous polarization as functions of the external electric field and polymer concentration, the effective coefficients of the Landau expansion of the free energy of the Sm-C* phase have been determined experimentally. The observed polymer concentration dependence of the Landau expansion coefficients is explained using a more general theoretical model which incorporates the effect of polymer networks on the local liquid crystal director configuration. In particular, using experimental estimates of the penetration depth of the polymer network into the liquid crystal, it is shown that the b coefficient calculated from the Landau model increases with polymer concentration, evidencing the relationship determined experimentally.