Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Dispersion relations for electromagnetic waves in a dense magnetized plasma

Shukla, P.K. and Stenflo, L. (2008) Dispersion relations for electromagnetic waves in a dense magnetized plasma. Journal of Plasma Physics, 74 (6). pp. 719-723. ISSN 0022-3778

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Dispersion relations for elliptically polarized extraordinary as well as linearly polarized ordinary electromagnetic waves propagating across an external magnetic field in a dense magnetoplasma are derived, taking into account the combined effects of the quantum electrodynamical (QED) field, as well as the quantum forces associated with the Bohm potential and the magnetization energy of the electrons due to the electron-1/2 spin effect. The QED (vacuum polarization) effects, which contribute to the nonlinear electron current density, modify the refractive index. Our results concern the propagation characteristics of perpendicularly propagating high-frequency electromagnetic waves in dense astrophysical objects (e.g. neutron stars and magnetars), as well as the next-generation intense laser-solid density plasma interaction experiments and quantum free-electron laser schemes.