Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Development of temporal and distance parameters of gait in normal children

Hillman, S.J. and Stansfield, B.W. and Richardson, A.M. and Robb, J.E. (2009) Development of temporal and distance parameters of gait in normal children. Gait and Posture, 29 (1). pp. 81-85. ISSN 0966-6362

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Temporal and distance parameters of 33 normal children were obtained from instrumented gait analysis prospectively over five consecutive years. The parameters were normalised to minimise the confounding effects of increasing height and leg length. Rank correlations were performed on normalised speed, normalised stride length, normalised cadence and normalised walk ratio across consecutive pairs of years to examine the ranking of these parameters for an individual child over time. Consistent trends of increasing rank correlation were observed in normalised stride length and normalised walk ratio suggesting that individual children were continuing to adjust these gait parameters towards their own characteristic position within the normal range. Consistent trends were not observed in the rank correlations for normalised speed and normalised cadence. These findings support the concept that individual children predominantly adjusted their cadence to effect changes in speed, while the development of stride length was dictated by other factors specific to the individual child. Rank correlation coefficients for walk ratio between consecutive years increased from the ages of 7-11 years of age and hence walk ratio appears be a feature of gait that matures beyond the age of 7 years. This accords with the proposal that it is an invariant parameter for an individual.