Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Estimation of flattening coefficient for absorption and circular dichroism using simulation

Halling, Peter J. (2009) Estimation of flattening coefficient for absorption and circular dichroism using simulation. Analytical Biochemistry, 387 (1). pp. 76-81. ISSN 0003-2697

[img]
Preview
PDF (strathprints019249.pdf)
strathprints019249.pdf
Accepted Author Manuscript

Download (637kB)| Preview

    Abstract

    The absorbance and circular dichroism (CD) of suspensions is lower than if the same amount of chromophore were uniformly distributed throughout the medium. Several mathematical treatments of this absorption flattening phenomenon have been presented using various assumptions and approximations. This article demonstrates an alternative simulation approach that allows relaxation of assumptions. On current desktop computers, the algorithm runs quickly with enough particles and light paths considered to get answers that are usually accurate to better than 3%. Results from the simulation agree with the most popular analytical model for 0.01 volume fraction of particles, showing that the extent of flattening depends mainly on the absorbance through a particle diameter. Unlike previous models, the simulation can show that flattening is significantly lower when volume fraction increases to 0.1 but is higher when the particles have a size distribution. The simulation can predict the slope of the nearly linear relationship between flattening of CD and the absorbance of the suspension. This provides a method to correct experimental CD data where volume fraction and particle size are known.