Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Assessment of a high-order finite difference upwind scheme for the simulation of convection-diffusion problems

Ferreira, V.G. and Kurokawa, F.A. and Queiroz, R.A.B. and Kaibara, M.K. and Oishi, C.M. and Cuminato, J.A. and Castelo, A. and Tomé, M.F. and McKee, S. (2009) Assessment of a high-order finite difference upwind scheme for the simulation of convection-diffusion problems. International Journal of Numerical Methods in Fluids, 60 (1). pp. 1-26. ISSN 0271-2091

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

This article deals with the study of the development and application of the high-order upwind ADBQUICKEST scheme, an adaptative bounded version of the QUICKEST for unsteady problems (Commun. Numer. Meth. Engng 2007; 23:419-445), employing both linear and nonlinear convection term discretization. This scheme is applicable to a wide range of computational fluid dynamics problems, where transport phenomena are of special importance. In particular, the performance of the scheme is assessed through an extensive numerical simulation study of advection-diffusion problems. The scheme, implemented in the context of finite difference methodology, combines a good approximation of shocks (or discontinuities) with a good approximation of the smooth parts of the solutions. In order to assess the performance of the scheme, seven problems are solved, namely (a) advection of scalars; (b) non-linear viscous Burgers equation; (c) Euler equations of gas dynamics; (d) Newtonian flow in a channel; (e) axisymmetric Newtonian jet flow; (f) axisymmetric non-Newtonian (generalized Newtonian) flow in a pipe; and (g) collapse of a fluid column. The numerical experiments clearly show that the scheme provides more consistent solutions than those found in the literature. From the study, the flexibility and robustness of the ADBQUICKEST scheme is confirmed by demonstrating its capability to solve a variety of linear and nonlinear problems with and without discontinuous solutions.