Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Differences in regional pulmonary pressure-impedance curves before and after lung injury assessed with a novel algorithm

Grychtol, Bartłomiej and Wolf, Gerhard K. and Arnold, John H. (2009) Differences in regional pulmonary pressure-impedance curves before and after lung injury assessed with a novel algorithm. Physiological Measurement, 30 (6). S137-S148. ISSN 0967-3334

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Global pressure-volume (PV) curves are an adjunct measure to describe lung characteristics in patients with acute respiratory distress syndrome (ARDS). There is convincing evidence that high peak inspiratory pressures (PIP) cause barotrauma, while optimized positive end-expiratory pressure (PEEP) helps avoid mechanical injury to the lungs by preventing repeated alveolar opening and closing. The optimal values of PIP and PEEP are deduced from the shape of the PV curve by the identification of so-called lower and upper inflection points. However, it has been demonstrated using electrical impedance tomography (EIT) that the inflection points vary across the lung. This study employs a simple curve-fitting technique to automatically define inflection points on both pressure-volume (PV) and pressure-impedance (PI) curves to asses the differences between global PV and regional PI estimates in animals before and after induced lung injury. The results demonstrate a clear increase in lower inflection point (LIP) along the gravitational axis both before and after lung injury. Moreover, it is clear from comparison of the local EIT-derived LIPs with those derived from global PV curves that a ventilation strategy based on the PV curve alone may leave dependent areas of the lung collapsed. EIT-based PI curve analysis may help choosing an optimal ventilation strategy.