
Multi-Objective Resource Selection in Distributed Information
Retrieval

Shengli Wu and Fabio Crestani∗

Department of Computer and Information Sciences
University of Strathclyde

Glasgow G1 1XH, Scotland, UK
Email: <shengli, fabioc>@cs.strath.ac.uk

Abstract

In a Distributed Information Re-
trieval system, a user submits a
query to a broker, which determines
how to yield a given number of doc-
uments from all possible resource
servers. In this paper, we propose
a multi-objective model for this re-
source selection task. In this model,
four aspects are considered simulta-
neously in the choice of the resource:
document’s relevance to the given
query, time, monetary cost, and sim-
ilarity between resources. An opti-
mized solution is achieved by com-
paring the performances of all pos-
sible candidates. Some variations of
the basic model are also given, which
improve the basic model’s efficiency.

Keywords: information retrieval,
resource selection, distributed digi-
tal libraries.

1 Resource Selection in

Distributed Information

Retrieval

With the rapid growth of information avail-
able via Internet, a huge number of resources
are available to users. However, the user often
finds it difficult to select the most appropri-
ate resource, given an information need. Dis-
tributed Information Retrieval (DIR) can help

∗Author to whom correspondence should be sent.

in this task by automating the resource selec-

tion process and making it transparent to the
user [8].

In the Information Retrieval and Database
research communities, much of the atten-
tion has been devoted to select those re-
sources which could provide the largest num-
ber of relevant documents. Some heuristic
methods have been proposed, for example,
in [2, 5, 11, 9, 1, 6].

More recently, Fuhr introduced cost as a fac-
tor to be considered for resource selection [3],
where the cost includes such factors as access
time, monetary cost of the service, expected
retrieval quality, expected number of relevant
documents in the resource, query processing
cost and document delivery cost. However,
the resource selection model is too abstract
and does not help much in the practical de-
cision of which resource to select, given these
costs. In addition, Fuhr’s model mixes many
type of costs into one objective–cost, so lack-
ing the flexibility of meeting various kinds of
user requirements. For example, a user A
could be concerned mostly about relevance,
and not be concerned with monetary cost of
accessing the documents or the time needed
to retrieve them. While user B might not
care much about the number of relevant doc-
uments he will retrieve and be mostly con-
cerned with getting a few relevant documents
quickly and cheaply. In such situations, a dis-
tinctive policy needs to be applied to each
user. In this paper we will consider indepen-
dently relevance, time, and monetary cost as
the main resource selection factors.

Another important factor in resource selec-
tion in DIR is the chance of getting document

duplicates. The issue of dealing with docu-
ments duplication in different resources has
been approached by several researchers, for
example in [7, 4]. It is obvious, that if many
duplicates are present in the fused retrieval
set, the user will waste money and time and
even if the service was free, it would still be
annoying for the user to be presented with
several identical documents. To prevent this
from happening, two things could be done at
two different stages by DIR systems. Firstly ,
at resource selection stage, a distinctive policy
can be used to select those resources which are
more likely to provide document duplicates
for a given query. Secondly, at data fusion
stage, duplication (totally or partially) can
be checked out and redundant documents can
be eliminated. While for duplicate detection,
processing documents at data fusion stage is
an indispensable complex process, since doc-
uments could not be identical but similar, so-
phisticated resource selection policy could al-
leviate the problem and help improving the
effectiveness and efficiency of the whole sys-
tem. Therefore, a two-stage process solution
is a sensible way. In this paper we will not
deal with document processing for duplicate
detection, but we will introduce in the re-
source selection model a factor that will take
into account the chance of getting document
duplicates.

We argue that multi-objective optimization
could provide an appropriate solution to deal
with the above problems. In the following of
this paper, we will present a multi-objective
resource selection model for DIR. The model
considers four aspects of resources: relevance
of the documents to the given query, time,
monetary cost, and chance of getting docu-
ment duplicates. The rest of the paper is orga-
nized as follows. Section 2 presents the frame-
work and the basic resource selection model.
Section 3 provides a general solution to the
above model. Section 4 briefly discusses ex-
tensions to the basic model. Section 5 con-
cludes the paper.

2 A Basic Resource Selection

Model

Assumption 1. In every local resource, the doc-

uments retrieved for any query are ranked in a

descending order of estimated relevance.

We think this is an acceptable assumption
since it is quite commonly met by most of
today’s Web search engines, Digital Library
systems, and Information Retrieval systems.

Assumption 2. For any query, the user always

specify a number n, instructing to the DIR sys-

tem to retrieve the top n estimated relevant

documents.

Suppose we have m resources for considera-
tion, D denotes the set of resources we have,
and D(i) (1 ≤ i ≤ m) denotes the i-th re-
source among them. In the following, all
the parameters are related to the result of
a given query Q. Doc(i) denotes the re-
sult set we get from D(i) with respect to
Q. N(i) denotes the number of documents in
D(i). Doc(i, j) denotes the j-th document in
Doc(i), and R(i, j) denotes the relevance esti-
mate for Doc(i, j). According to Assumption
1, all retrieved documents appear in descend-
ing order of estimated relevance. Therefore,
for any 1 ≤ j ≤ N(i)−1, R(i, j) ≥ R(i, j+1).
Tall(i, j) denotes the time spent to retrieve the
first j documents in Doc(i), while C(i, j) de-
notes the charge or monetary cost to be payed
for Doc(i, j).

Assumption 3. For every local resource D(i),
and every document D(i, j) returned from it for

a given query, the estimated relevance R(i, j)
has been normalized so that 0 ≤ R(i, j) ≤ 1
always holds.

It is also useful to consider the following mea-
sures:

Avg T (i, j) =
Tall(i, j)

j

Avg C(i, j) =
1

j

j
∑

k=1

C(i, k)

Avg R(i, j) =
1

j

j
∑

k=1

R(i, k)

which denote the average time, the average
charge, and the average relevance of the first
j (1 ≤ j ≤ N) documents in Doc(i), respec-
tively.

Among them, Avg T (i, j) and Avg C(i, j)
need further normalization. Since both are
usually measured in the same or comparable
units, a multi-resource-wide (global) normal-
ization is possible. For Avg T (i, j), we define
for any 1 ≤ i ≤ m and 1 ≤ j ≤ N(i):

T (i, j) = Tall(i, j) − Tall(i, j − 1)

T (i, j) is the time difference between the first
j − 1 and j documents obtained from D(i),
so, for example, T (i, 1) is the time needed for
retrieving document D(i, 1) from D(i). We
can also define:

Tmax = max
(1≤i≤m,1≤j≤N)

T (i, j)

and

N Avg T (i, j) =
Tall(i, j)

j ∗ Tmax

For C(i,j), we first define

Cmax = max
(1≤i≤m,1≤j≤N(i))

C(i, j)

which yield:

N Avg C(i, j) = Avg C(i, j)/Cmax

In a similar way, Avg T (i, j) and Avg (i, j)
are normalized into N Avg T (i, j) and
N Avg C(i, j) respectively, yielding values in
the range [0, 1].

Assumption 4. We have a measure of simi-

larity between each pair of resources D(i) and

D(j). The similarity measure is normalized in

the range [0, 1] and can be represented through

a similarity matrix S, such as S(i, j) denotes the

similarity between resource D(i) and D(j).

The following two properties always hold true
for S: a) for any 1 ≤ i ≤ m, S(i, i) = 0, and
b) for any 1 ≤ i ≤ m, 1 ≤ j ≤ m, S(i, j) =
S(j, i).

The aim of the similarity measure is to pro-
vide an estimate of the possibility of hav-
ing duplicate documents retrieved from two
different resources. We will not address the
derivation of this measure of similarity in this
paper. Suffices to say that this could be
done via the analysis of the results of sam-
ple queries and can be kept up to date by
monitoring the results of users queries.

Suppose (X = {x1, x2, ..., xm}) is an array,
here each xi (1 ≤ i ≤ m) is an integer rep-
resenting the number of documents obtained
from D(i). We define a multi-resource simi-
larity measure in the following way. Firstly,
We define a function

f(i) =

{

0 if xi = 0
1 if xi ≥ 1

for 1 ≤ i ≤ m, which indicates which resource
has documents occurring in the result. Then
we define:

Sres−all =
m−1∑

i=1,i<j

m∑

j=2

f(i)f(j)S(i, j) (1)

which sums up the similarity measure of every
pairs of different resources whose documents
occur in the result.

For a given query Q and a given number n,
we aim at finding a resource selection policy
which could consider all the four above cri-
teria (i.e. document’s relevance to the query,
time, charge, and chance of the document be-
ing a duplicate) at the same time. The prob-
lem can be qualified as a multi-objective opti-

mization problem.

Suppose (X = {x1, x2, ..., xm}) is a potential
solution to this problem. An optimized solu-
tion to our problem should maximize:

Rres =
1

n

m∑

i=1

Avg R(i, xi) ∗ xi

and minimize at the same time:

Tres =
1

n

m∑

i=1

N Avg T (i, xi) ∗ xi

Cres =
1

n

m∑

i=1

N Avg C(i, xi) ∗ xi

Sres = 2/m′(m′ − 1)Sres−all (2)

Here m′ denotes the number of resources
which contributes some documents to the re-
sult, so the total number of different resource
pairs is m′(m′ − 1)/2.

We use the Utility Function Method to deal
with this multi-objective optimization prob-
lem [10]. Firstly, a utility function is defined
for each of the above objectives depending on
their importance; then a total utility function
can be defined. In our case, we just adopt
a linear function by defining a coefficient for
each of the objectives, but some more com-
plex functions could be used. Therefore, we
could define a total utility function as follow:

U = k1Rres − k2Tres − k3Cres − k4Sres (3)

where k1, k2, k3, and k4 are coefficients whose
values range in [0, 1] and k1 +k2 +k3 +k4 = 1.

We now have to to maximize U.

3 Solution to the Basic Resource

Selection Model

To simplify the discussion, we suppose that
for each resource D(i), the size of Doc(i) is
always n. This could be achieved in the fol-
lowing way: if the size of the retrieved doc-
ument set for D(i) is greater than n, we can
keep the first n documents and discard the
rest; if the size of document set is less than n,
we reach n with some documents with a very
low R (i.e. relevance estimate value close to
0), and with very high C and T values (close
to 1). In short, we should guarantee that such
dummies will not be selected later as real doc-
uments. However, it should be noted that it
is often the case that number of estimated rel-
evant documents from each resource is often
greater than n.

One way to obtain the overall optimum solu-
tion is by enumerating all possible candidates
and decide which one is the best. Notice that
n documents in m resources can be mapped
into a m-digit number with carry n + 1. The
problem can be mapped into finding out all
such numbers whose digits in all places sum
to n. The following rules are always true for
the numbers which satisfy our requirement:

• n is the smallest;

• n 0.........0
︸ ︷︷ ︸

m−1

is the largest;

• if T is a satisfied number whose digit in
the units is not 0, then beyond T , T +
n is the smallest one which satisfies our
requirement;

• if T = n′ 0.........0
︸ ︷︷ ︸

l&1≤l<m−2

is a satisfied number,

then T + (n− n′ + 1) 0..........0
︸ ︷︷ ︸

l−1

(n′ − 1) is

the next one beyond T.

Based on above, we can use the algorithm
reported in Figure 1 to compute the opti-
mum solution. For each solution, such algo-
rithm calls Procedure Cal utility to calculate
its utility, compares them, and keeps the best
as the final solution.

Let us explain how the Procedure CalUtility
works. Suppose we know the values of D, m,
n, k1, k2, k3, k4, R(i, j), C(i, j), Tall(i, j),
and S(i, j) for (1 ≤ i ≤ m, 1 ≤ j ≤ n).
One simple way, when we get a solution
(X = {x1, x2, ..., xm}), is to calculate its util-
ity directly by Equation 3. Firstly, we can
calculate N Avg T (i, j), N Avg C(i, j), and
Avg R(i, j) for any i and j, that takes O(mn)
time. Then we get Rres, Tres, and Cres, that
takes O(m) time. For similarity, we first cal-
culate out Sres−all (Equation 1), and finally
Sres (Equation 2), which should take O(mn)
time in all. Finally, we sum them together.

The above process has room for improvement.
The utility in Equation 3 for a solution can be
divided into four parts. The first three parts
of the utility have common properties, that

01. Algorithm 1: Calculating the Optimum
solution
02. Input: m, n; //m databases and n doc-
uments needed
03. Output: best utility, x(1..m); // For
the optimum solution
04. //Variable used: p points to the lowest
non-zero place
05. //Variable used: A(0..m) for keeping a
n-digit number
06. best utility = -∞; //Lines 6-8 for ini-
tialization
07. for i:= 0 to m-1 do A(i) := 0;
08. A(m) := n;
09. while (A(0) 6= 1) do
10. { utility := CalUtility(A);
11. if (utility > best utility)
12. { best utility := utility;
13. for j := 1 to m do X(j) := A(j);
14. }
15. //Lines 16-23 for setting up next so-
lution
16. if (A(m) 6= 0) //the digit in the units
is not 0
17. { A(m) := A(m)-1; A(m-1)++;
18. if A(m)=0 p := m-1;
19. }
20. else // the digit in the units is 0
21. { A(m) := A(p)-1; A(p) := 0; A(p-
1)++;
22. if A(m)=0 then p–;
23. }
24. }
25. Procedure CalUtility(A)
26. //Calculate the utility of a given solu-
tion

Figure 1: Algorithm for the Basic Model

is, for any given resource, the utility of a so-
lution from one part is only determined by
the number j of documents which is involved
in the result. For example, for relevance it is
j ∗ Avg R(i, j), if the first j documents in re-
source D(i) are involved in the solution. But
for resource similarity, the situation is differ-
ent, since that part of utility function is de-
cided by all the resources which have some
documents appearing in the result set.

If we pre-calculate the value for every element
of U ′(i, j):

U ′(i, j) = j∗(k1Avg R(i, j)−k2N Avg T (i, j)−

−k3N Avg C(i, j)) (4)

then, for every solution, we can get its partial
utility value by just one scan of each xi value
of every resource D(i), i.e.

∑m
i=1 U ′(i, xi)/n.

However, there is no simple way for getting
Scre, which has to be handled as described
above. In such a way, CalUtility needs O(m2)
time for every execution.

Theorem 1. For m resources and n docu-

ments, the number of all possible solutions are:

S(m,n) = m(m+1)....(m+n−1)
n! . The proof of this

theorem cannot be reported in this paper for

space limitations.

According to Stirling’s formula,
n! ≈ (n/e)n

√
2πn. Therefore, S(m,n) =

(m+n−1)!
n!(m−1)! ≈ ((m+n−1)/e)m+n−1

√
2π(m+n−1)

(n/e)n

√
2πn((m−1)/e)m−1

√
2π(m−1)

≈ (m+n)m+n

nnmm
. When m = n, the above

function gets its maximum, so the worst time
complexity of S(m,n) is O(2m+n).

4 Some Variations and Related

Solutions

The basic model in Section 2 could precisely
reflect the multi-objective resource selection
problem, but the optimum solution given in
Section 3 is not very efficient. The reason for
that is due to resource similarity. We need to
have complete information about the similar-
ity between resources. In this section we will
remove some of these requirements to improve
efficiency. These variation to the basic model

are still sound and reflect more appropriately
the real resource selection problem.

4.1 Static Variation Model

One possible way is to define an average sim-
ilarity measure for every resource available:

Avg S(i) =
1

m − 1

m∑

j=1

S(i, j)

for any D(i). Then based on that, we define
Sres as follow:

Sres =
1

m′

m∑

i=1

f(i)Avg S(i) (5)

Here both m′ and f(i) have the same meaning
as in Equation 1 and 2, however, comparing
the above equation with Equation 1 and 2,
we see that in Equation 5 each addend is just
decided by one resource rather than by a pair
of them. In this variation of the basic model,
all other three parts in the utility function are
the same. Since the utility of each resource
can be calculated independently from other
resources we call this model Static Variation

Model.

Notice that since we make our decision only
considering Avg S(i) for any given resource,
and not the exact values, such a model is less
accurate than the basic model. However, we
can benefit from this simplified model as Al-
gorithm 1 could be implemented more effi-
ciently. We can evaluate the matrix U(i, j)
using the following equation:

U(i, j) = (k1Avg R(i, j) − k2N Avg T (i, j)−

−k3N Avg C(i, j) − k4Avg S(i)) ∗ j (6)

In such a way, CalUtility(A) just needs O(m),
and not O(m2) as before.

Actually, we can benefit even more. In such
a situation, the “divide-and-conquer” algo-
rithm in Figure 2 could be used. The divid-
ing step iterates over the number of resources,
while the merging step is performed in Proce-
dure BestUtility. Since the utility for docu-
ments in each resource is not related to any

01. Algorithm 2: Computing the Optimum
Solution

for Static Variation Model
02. Input: m, n, U(1..m, 0..n); //U(i,0) is
always 0
03. Output: best utility, X(0..m); // For
the optimum solution
04. for i:= 1 to n do X(i) := U(1,i);
05. for i:= 1 to m do
06. { BestUtility(X, U(i), M);
07. for j:= 0 to m do x(i):= B(i);
08. }
09.
10. Procedure BestUtility(X’,U’,M’)
11. for k:=0 to n do
12. { M’(k) := X’(k);
13. for j:=0 to k-1 do
14. if (M ′(k) < (X(j) + U ′(k − j)))
{M’(k):=X’(j)+U’(k-j); }
15. }

Figure 2: Algorithm for the Static Variation
Model

other resource which contributes to the result,
we can use the maximum computed for i re-
sources in computing the maximum for i + 1
resources. The time complexity of the algo-
rithm is O(mn2).

4.2 Utility Function Analysis

Before further discussion, let us analyze the
Utility function under Static Variation Model.
For any given i, U(i, j) only varies with j. We
can rewrite Equation 6 as follow:

Udb(j) = k1Avg Rdb(j) − k2N Avg Tdb(j)−

−k3N Avg Cdb(j) − k4Avg Sdb (7)

Let us now discuss each of the four parts in
Equation 7 one by one.

• Avg Sdb is invariant wrt j.

• The value of Avg Rdb(j) decreases when
j increases, according to Assumption 1 in
Section 2. Further, we could assume that
the relevance measure for documents in

Doc(i) forms an arithmetic progression,
that is, each document gets a certain
amount less than its previous one when
ordered by relevance. Then Avg Rdb(j)
(N Avg Rdb(j)) is a straight line with
negative slope.

• Connection time is one important part of
all the time needed. It becomes a bigger
part if only few documents are retrieved.
If we assume that every document has
the same size and the data transfer
rate per unit time keeps constant, then
Avg Tdb(i, j) (N Avg Tdb(i, j)) is mono-
tonically decreasing with the number of
documents j.

• As for charge, we simply consider the fol-
lowing possible alternatives: a) a charge
per unit of time; b) a charge per unit
of data; c) a charge per document.
Again, if we suppose every document
has the same size and the data trans-
fer rate per unit of time is constant,
then the first two become identical. In
such a situation, Avg Cdb(j) is just like
Avg Tdb(j) in shape. In the third situa-
tion, Avg Cdb(j), just like Avg Sdb, keeps
constant wrt variations of j. We can
prove that in such situations the shape of
Pdb(j) can only be decreasing or increas-
ing monotonically, or firstly increasing to
a certain point then decreasing. What is
more, the corresponding Udb values could
be different from one to another for differ-
ent resources, still, their general shapes
are always very similar to each other.

In practical situations, things could be more
complicated especially for time and charge.
We will not try to present any more detailed
considerations fitting practical use.

4.3 A Greedy Algorithm and the

Dynamic Variation Model

For reasons of space we will not be able
to present here other two algorithms: the
Greedy algorithm, which assumes that only
one maximum exists in the utility function
for each resource, and the Dynamic Variation

Model, which remove the assumption related
to the availability of similarities reported in
the Static Variation Model. Both the Greedy
algorithm and the Dynamic Variation Model
bring the worst complexity of resource selec-
tion to O(mn).

The details of these algorithm will be pre-
sented in an extended version of this paper.

5 Conclusion

In this paper, we propose a multi-objective
model for resource selection in distributed in-
formation retrieval, in which four aspects are
considered: document’s relevance to a given
query, query time, query expense, and similar-
ity between resources. An optimized solution
is achieved by comparing the performances of
all possible solutions. In addition, some vari-
ations to the basic multi-objective model have
been proposed as well, for more efficient im-
plementations.

The following are some related issues demand-
ing further consideration:

• In this paper we assume that relevance of
documents to a query is normalized for
all resources. However, that is not the
usual case in practice. Further effort is
needed, especially when each resource use
a different indexing and retrieval model.

• A similarity measure between resources
has been assumed throughout this paper,
but how to define and implement such a
measurement is not trivial.

• The algorithms presented in this paper
(and some that could not be presented
for space limitations) need further study
with regards to their efficiency.

We are currently working in these directions.

Acknowledgements

This work is supported by the EU Com-
mission under IST Project MIND(IST-2000-
26061). More information about MIND
can be found at http://www.mind-project.
net/.

References

[1] J. Callen, M. Connell, and A. Du. Au-
tomatic discovery of language models
for text databases. In Proceedings of

ACM SIGMOD International Confer-

ence, Philadelphia, USA, May 1999.

[2] J.K. Callen, Z. Lu, and W. Croft. Search-
ing distributed collections with inference
networks. In Proceedings of the 18th an-

nual International ACM SIGIR Confer-

ence, Seattle, June 1995.

[3] N. Fuhr. A decision-theoretic approach
to database selection in networked ir.
ACM Transaction on Information Sys-

tems, 17(3):229–249, 1999.

[4] H. Garcćıa-Molina and N. Shivakumar.
A copy detection mechanism for digital
documents. In Proceedings of 2nd Inter-

national Conference in Theory and Prac-

tice of Digital Libraries, Austin, USA,
June 1995.

[5] L. Gravano and H. Garćıa-Molina. Gen-
eralizing gloss to vector-space database
and broker hierarchies. In Proceedings of

21st VLDB Conference, Zűrich, Switzer-
land, 1995.

[6] D. Hawking and P. Thistlewaite. Meth-
ods fro information server selection.
ACM Transaction on Information Sys-

tems, 17(1):40–76, January 1999.

[7] K. Monostori, A. Zaslavsky, and
H. Schmit. Document overlap detection
system for distributed digital libraries.
In Proceedings of ACM International

Conference on Digital Libraries, pages
226–227, San Antonio, June 2000.

[8] H. Nottelmann and N. Fuhr. MIND: an
architecture for multimedia information
retrieval in federated digital libraries.
In Proceedings of the DELOS Workshop

on Interoperability in Digital Libraries,
Darmstadt, Germany, 2001.

[9] A. Powell, J. French, J. Callen, M. Con-
nell, and C. Viles. The impact of

database selection on distributed search-
ing. In Proceedings of ACM SIGIR Con-

ference, pages 232–239, Athens, Greece,
July 2000.

[10] S.S. Rao. Optimization Theory and Ap-

plications. Wiley Eastern Limited, 1984.

[11] B. Yuwono and D. Lee. Server rank-
ing for distributed test retrieval sys-
tems on the internet. In Proceedings

of the Fifth International Conference on

Database Systems for Advanced Applica-

tion, Melbourne, Australia, April 1997.

