Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Scalable video multicast using expanding window fountain codes

Vukobratovic, D. and Stankovic, V. and Sejdinovic, D. and Stankovic, L. and Xiong, Z. (2009) Scalable video multicast using expanding window fountain codes. IEEE Transactions on Multimedia, 11 (6). pp. 1094-1104. ISSN 1520-9210

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Fountain codes were introduced as an efficient and universal forward error correction (FEC) solution for data multicast over lossy packet networks. They have recently been proposed for large scale multimedia content delivery in practical multimedia distribution systems. However, standard fountain codes, such as LT or Raptor codes, are not designed to meet unequal error protection (UEP) requirements typical in real-time scalable video multicast applications. In this paper, we propose recently introduced UEP expanding window fountain (EWF) codes as a flexible and efficient solution for real-time scalable video multicast. We demonstrate that the design flexibility and UEP performance make EWF codes ideally suited for this scenario, i.e., EWF codes offer a number of design parameters to be ldquotunedrdquo at the server side to meet the different reception criteria of heterogeneous receivers. The performance analysis using both analytical results and simulation experiments of H.264 scalable video coding (SVC) multicast to heterogeneous receiver classes confirms the flexibility and efficiency of the proposed EWF-based FEC solution.