Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Exploitation of secondary metabolites by animals : a response to homeostatic challenges

Forbey, J.S. and Harvey, A.L. and Huffman, M.A. and Provenza, F.D. and Sullivan, R. and Tasdemir, D. (2009) Exploitation of secondary metabolites by animals : a response to homeostatic challenges. Integrative and Comparative Biology, 49 (3). pp. 314-328. ISSN 1540-7063

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

We propose that the exploitation of the bioactive properties of secondary metabolites (SMs) by animals can provide a "treatment" against various challenges that perturb homeostasis in animals. The unified theoretical framework for the exploitation of SMs by animals is based on a synthesis of research from a wide range of fields and although it is focused on providing generalized predictions for herbivores that exploit SMs of plants, predictions can be applied to understand the exploitation of SMs by many animals. In this review, we argue that the probability of SM exploitation is determined by the relative difference between the cost of a homeostatic challenge and the toxicity of the SM and we provide various predictions that can be made when considering behavior under a homeostatic perspective. The notion that animals experience and respond to costly challenges by exploiting therapeutic SMs provides a relatively novel perspective to explain foraging behavior in herbivores, specifically, and behavior of animals in general. We provide evidence that animals can exploit the biological activity of SMs to mitigate the costs of infection by parasites, enhance reproduction, moderate thermoregulation, avoid predation, and increase alertness. We stress that a better understanding of animal behavior requires that ecologists look beyond their biases that SMs elicit punishment and consider a broader view of avoidance or selection of SMs relative to the homeostatic state. Finally, we explain how understanding exploitation of SMs by animals could be applied to advance practices of animal management and lead to discovery of new drugs.