Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Dft investigation of the 'quasi-living' propene polymerisation with Cp*TiMe3/b(C6F5)(3): the 'naked cation' approach

Sassmannshausen, J. (2009) Dft investigation of the 'quasi-living' propene polymerisation with Cp*TiMe3/b(C6F5)(3): the 'naked cation' approach. Dalton Transactions (41). pp. 8993-8999. ISSN 1477-9234

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Some time ago we reported the quasi-living polymerization of propene with the catalytic mixture of Cp*TiMe3 and B(C6F5)3 (Cp* = C5Me5). Surprisingly, this mixture is extremely sensitive towards the nature of the anion and the presence of aluminium alkyl. This intriguing observation led us to the attempt to unearth the underlying reaction mechanism using a computational approach. In this communication, we are reporting the first results with the naked cation approach. We obtained evidence, that the 1,2 insertion is the predominant reaction pathway. Whereas initial 1,2 and 2,1 insertion barriers are comparable, consequent second insertion is more discriminating between the two. Although we obtained evidence for the formation of -H agostic bonds, we found that -H elimination is a rare event due to the rather high activation barrier. We can conclude that the quasi-living polymerisation is at least partly an intrinsic property of the cation.