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Abstract

We review the properties of optical spatial dissipative solitons (SDS). These are
stable, self-localized optical excitations sitting on a uniform, or quasi-uniform, back-
ground in a dissipative environment like a nonlinear optical cavity. Indeed in optics
they are often termed ‘cavity solitons’. We discuss their dynamics and interactions
in both ideal and imperfect systems, making comparison with experiments. SDS
in lasers offer important advantages for applications. We review candidate schemes
and the tremendous recent progress in semiconductor-based cavity soliton lasers.
We examine SDS in periodic structures, and we show how SDS can be quantita-
tively related to the locking of fronts. We conclude with an assessment of potential
applications of SDS in photonics, arguing that best use of their particular features
is made by exploiting their mobility, e.g. in all-optical delay lines.

Key words: dissipative spatial solitons, cavity solitons, nonlinear photonics,
optical pattern formation, homoclinic snaking, cavity soliton lasers, spatial effects
in optical bistability, VCSEL, all-optical delay lines

1 Introduction

1.1 Basic definitions and scope

Spontaneous pattern formation is a widespread consequence of nonlinearity in
spatially-extended systems driven out of equilibrium (Cross and Hohenberg,
1993), and has been predicted and/or observed in a wide variety of systems,
including fluid dynamics (Manneville, 1990), chemistry (Ross et al., 1988),
biology (Murray, 2003), ferro-fluids (Richter and Barashenkov, 2005), gas dis-
charges (Müller et al., 1999), granular media (Umbanhowar et al., 1996) and
optics (McLaughlin et al. (1983); Lugiato and Lefever (1987); Abraham and
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Firth (1990); Lugiato et al. (1994); Neubecker (1996); Rosanov (1996); Lu-
giato et al. (1999); Arecchi et al. (1999); Ackemann and Lange (2001); Firth
and Weiss (2002); Rosanov (2002); Oppo (2009)).

Possibly even more fascinating is self-localization, i.e. the formation of nonlinearity-
sustained localized objects, which is again a quite universal feature in nonlinear
science, e.g. (Umbanhowar et al. (1996); Müller et al. (1999); Riecke (1999);
Coullet (2002); Richter and Barashenkov (2005); Akhmediev and Ankiewicz
(2005a, 2008)). Although dissipation plays a major role in most natural sys-
tems, much of early research into self-localization concentrated on the conser-
vative limit, and in particular on solitons, i.e. exact solutions to integrable,
conservative, nonlinear wave equations, see, e.g., (Remoissenet, 1994).

In optics, spatial optical solitons are beams of light in which nonlinearity
counter-balances diffraction, leading to a robust structure which propagates
without change of form (see Fig. 1a) (Stegeman and Segev (1999); Segev
(2002)). In the conservative case, the range of materials is rather limited –
they need to be self-focusing – and in many cases the existence of stable spa-
tial solitons is also limited to one-dimensional systems. Such is the case for the
simplest soliton medium, one with a Kerr nonlinearity, i.e. a refractive index
which changes in proportion to the intensity of the light. However, as many
researchers demonstrated over the last years and as we are trying to review
and elucidate here, more general schemes can support stable soliton-like so-
lutions with lots of intriguing and new properties, if dissipation and driving
and/or feedback are explicitly introduced. Among these, localized bright spots
(see Fig. 2) in driven optical cavities (Fig. 1b, c) have received a great deal
of attention because of their experimental realizability in semiconductor mi-
croresonators and potential applications in information processing. These are
usually referred to as cavity solitons (CS) (Firth and Harkness (1998); Firth
and Weiss (2002); Barland et al. (2002)). Actually, a “half-cavity” turns out
to be enough, i.e. very similar objects are found in arrangements in which
feedback is provided by a single-mirror only (Fig. 1d, “single-mirror feedback
scheme” (Firth (1990); D’Alessandro and Firth (1991); Ackemann and Lange
(2001)), see Figs. 3, 4). They can be named feedback solitons (FS). In the
nonlinear science literature self-localized dissipative structures are variously
referred to as “localized states” (Burke and Knobloch, 2006), “localized struc-
tures” (LS) (Coullet et al. (2000); Coullet (2002)), “localized patterns” (Coul-
let (2002); Dawes (2008)) or spatial dissipative solitons (SDS) (Akhmediev
and Ankiewicz (2005a, 2008)). Perhaps the earliest term of all is “autosoli-
ton”, still much used in the Russian literature (Rosanov and Khodova (1988);
Kerner and Osipov (1989); Rosanov and Khodova (1990)). Here we adopt SDS
because, in our opinion, it nicely stresses similarities and differences between
these structures and “solitons”.

The history of cavity solitons probably began with the seminal theoretical
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Fig. 1. Nonlinear optical systems supporting pattern formation and solitons (plane
mirrors are drawn in gray): a) nonlinear beam propagation, b) cavity filled with
nonlinear medium, c) cavity with a short medium, d) single-mirror feedback ar-
rangement.

papers of Moloney and co-workers (McLaughlin et al., 1983) and Rosanov and
coworkers (Rosanov and Semenov (1980); Rosanov and Khodova (1988, 1990);
Fedorov et al. (1991)) stemming from interest in spatial aspects of optical
bistability (Gibbs (1985); Lugiato (1984)). Early experiments followed soon
afterwards (Kreuzer et al. (1991); Neubecker and Tschudi (1994); Bazhenov
et al. (1991)). Overviews and reviews of the early stage of the field can be
found in Abraham and Firth (1990); Lugiato et al. (1994); Rosanov (1996);
Neubecker et al. (1999); Lugiato et al. (1999); Arecchi et al. (1999); Weiss
et al. (1999); Trillo and Torruellas (2001); Ackemann and Lange (2001); Firth
(2001); Firth and Weiss (2002); Rosanov (2002); Lugiato (2003).

In this contribution we want to review more recent developments, prompted
by the fact that SDS have been realized in photonic devices like semicon-
ductor microcavities, which belong to mainstream research in applied opto-
electronics (Barland et al., 2002). SDS in these robust, compact and compar-
atively fast systems appeal not only to those interested in the fundamentals
of self-organization but also offer a new approach to all-optical processing
applications.

The remainder of this section provides a more detailed introduction into phe-
nomenology and basics of SDS. We will also introduce a set of “standard equa-
tions”, which will be repeatedly used in following sections. In Sec. 2 a detailed
treatment of the bifurcation structure of SDS is given and the phenomenon of
homoclinic snaking which is at the heart of the complexity behind the multi-
stability of SDS and clusters of SDS, is analyzed. This research is of strong
interest to the Applied Mathematics community – illustrating the universality
of the phenomena related to SDS in Nonlinear Science – but the results are also
highly relevant for applications. In Sec. 3, we will explore the specifics of SDS
in lasers, i.e. systems with the additional symmetry of phase invariance. Here,
the last years witnessed tremendous progress in semiconductor-based photonic
devices driven by a recent European project FunFACS (Fundamentals, Func-
tionalities and Applications of Cavity Solitons). Photonic crystal structures or,
more generally, periodic refractive index modulations provide powerful tools
to provide control over light propagation. Sec. 4 explores their application to
control self-organization and SDS. Sec. 5 deals with specific mechanisms how
SDS are stabilized and will demonstrate how the dynamics of fronts between
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spatially extended states can lead to SDS. Sec. 6 gives an account of possible
and realized applications of SDS and the material challenges needing to to
be tackled to make SDS applications viable. Finally, Sec. 7 provides a short
summary and outlook on the field.

This article draws mainly on the work of ourselves and collaborators. This is
primarily for convenience, because (although still quite young) the field is al-
ready too large to be completely covered in a single review. We have tried, how-
ever, to present a fair and reasonably comprehensive list of relevant references.
We already mentioned some reviews of earlier work: more recent relevant re-
views, monographs and special issues include (Staliunas and Sánchez-Morcillo
(2003); Drummond et al. (2004); Mandel and Tlidi (2004); Akhmediev and
Ankiewicz (2005a); Weiss and Larionova (2005); Residori (2005); Akhmediev
and Ankiewicz (2008)). Some information can be also found on the website
of the FunFACS project (IST-STREP 004868, 2005-2008). Most of the effects
we treat (with some exceptions in Sec. 5) can be understood in the framework
of frequency-degenerate χ(3)-nonlinearities, or saturable nonlinearities where
the third order term is the leading one. There is a rich phenomenology and
literature on optical SDS – though no experiments – relying on coupling be-
tween fields with very different frequencies, e.g. by a χ(2) nonlinearity. This has
been shown in mean-field models to support SDS in both second-harmonic-
generation (SHG) (Etrich et al. (1997); Michaelis et al. (2003)) and optical
parametric oscillator (OPO) (Longhi (1997); Staliunas and Sánchez-Morcillo
(1997); Oppo et al. (1999); Le Berre et al. (1999); Skryabin et al. (2000); Tlidi
et al. (2000); Oppo et al. (2001); Etrich et al. (2002); Gomila et al. (2003))
configurations. In addition, we do not cover the rich literature on temporal dis-
sipative solitons though it is highly relevant for modern ultra-fast mode-locked
lasers, at least in some operating regimes. We can refer to the contributions
in (Akhmediev and Ankiewicz (2005a, 2008)) here.

1.2 Phenomenology of optical SDS

An archetypical example for a cavity system sustaining SDS is the vertical-
cavity surface-emitting laser (VCSEL) Wilmsen et al. (1999). These are high-
finesse semiconductor microcavities which are closed by high-reflectivity dis-
tributed Bragg reflectors (DBR). The active medium consists typically of
quantum well structures which can be absorbing or – with electrical or optical
pumping – provide gain. The inner cavity is typically only one wavelength
thick and the effective cavity length (including the penetration in the DBR)
on the order of 1-2 µm. However, they can be produced with an aperture size
of 100-200 µm, realizing a system in which the transverse boundaries can be
“far” from the interesting self-localized structures. In the key experiment, il-
lustrated in the left panel of Fig. 2, a VCSEL is operated as an amplifier but
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Fig. 2. Left: Scheme of an experiment in a vertical-cavity amplifier (VCA) operating
around 980 nm. M1, M2 plane mirrors, QW quantum wells. The system is driven
by a homogeneous cw broad-area holding beam. A pulsed focused writing beam
can be used to control the SDS. Right: Typical intensity distribution of the output
field in a vertical-cavity amplifier showing the presence of seven SDS. [Reprinted
figure with permission from Hachair et al. (2004). Copyright 2004 by the American
Physical Society.]

remains below the threshold for laser oscillation Barland et al. (2002); Hachair
et al. (2004). Then a broad-area holding beam (HB) is added. At certain bi-
asing conditions of the HB, SDS structures like those depicted in the right
panel of Fig. 2 are observed. Similar observations were made later in a scheme
where the the electrical injection was replaced by an optical pumping beam
Barbay et al. (2006).

The fundamental SDS usually is a bright spot of light on some low amplitude
background (see Figs. 2-4). It is self-localized in the two spatial dimensions
transverse to the main propagation axis (e.g. the cavity axis). The decay of
energy in the wings is asymptotically exponential, as can be shown by the
method of “spatial dynamics” Coullet et al. (2000). Close inspection shows
that spatial oscillations can be superimposed on this decay, see Figs. 3, 4.
These are important for understanding interaction of SDS (e.g. the formation
of the clusters shown in Fig. 3) and the locking of fronts (Sec. 5).

In the propagation or longitudinal direction, typical SDS are localized by the
boundary conditions, e.g. the cavity mirrors (Fig. 1b, c). Along the longitu-
dinal direction a SDS can show “trivial” changes – e.g. due to linear optical
propagation Schäpers et al. (2000, 2003) – but at any particular plane it stays
constant in time (after the transients have died out).

Fig. 4b illustrates another very important property of SDS. Over a consider-
able parameter range (here the HB intensity) they coexist with a background
state (in the simplest case a homogeneous state) which is linearly stable against
weak perturbations. This implies that SDS can be present or absent under the
same conditions. This makes them natural “bits” for parallel processing of op-
tical information. As beautifully demonstrated in Fig. 4a, they can be excited
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a) b) c) d) e)

Fig. 3. Stable clusters of localized structures at different pumping levels in a sin-
gle-mirror feedback system based on sodium vapor in a nitrogen buffer gas atmo-
sphere as the nonlinear medium. Power: a) 131 mW, b) 133 mW, c) 133 mW, d) 135
mW and e) 138 mW. The images (transverse size 2.6 mm) are partially overexposed
in order to emphasize the diffraction fringes surrounding each localized structure
[Reprinted figure with permission from Schäpers et al. (2000). Copyright 2000 of
the American Physical Society.]

by a writing beam (WB), a focused optical pulse derived from the same laser as
the HB (see also the left panel of Fig. 2). For pulse amplitudes above a certain
threshold, the SDS switches on. Below the threshold value, the system returns
to the stationary state, i.e. “hard” excitation is required. The threshold marks
a separatrix, which turns out to be an unstable SDS branch connecting the
stable background state and the stable SDS branch (Fig. 4b). We will discuss
this further in Sec. 1.4 and in Sec. 2. Whereas switch-on is initiated by a local
increase of intensity due to constructive interference between the HB and the
WB, the SDS can be erased again by injecting the WB with opposite phase
Brambilla et al. (1996). This provides the basis for an optically controllable
memory.

Finally, Fig. 4b indicates that the SDS branch is unique, i.e. the SDS has
a defined amplitude and width for a given set of parameters. This is due
to the fact that SDS are attractors of the dissipative dynamics, a feature
that separates them from solitons in conservative systems, which exist as one-
parameter families.

Note that in Fig. 2 SDS seem to exist only in parts of the device, and there
are additional low amplitude states. This is related to device inhomogeneities
and imperfections, an issue we will encounter repeatedly in our discussion. In
order to demonstrate the solitonic nature of experimentally observed “spots”,
it is an established procedure Barland et al. (2002) to demonstrate that several
(at least two) can be switched on and off independently, demonstrating their
independence from each other and from boundaries or other structures in the
device. We will discuss a specific example below (see Fig. 18 in Sec. 3). Note
that this is an operational definition of an optical SDS, suitable for most
experiments. However, switching and independence might be demonstrated
by other means than optical injection.
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Fig. 4. SDS in a liquid-crystal light-valve (LCLV), a hybrid electro-optical system
allowing the implementation of a single-mirror feedback situation (Fig. 1d) within
a large transverse area Neubecker et al. (1995). a) Switching dynamics for different
amplitudes of the WB (varying between sub-threshold and super-threshold excita-
tion) and a constant pulse length of τp = 100 ms. b) Steady-state characteristics of
the LCLV: a) background state (no SDS), b) SDS branch (see inset for contrast-en-
hanced spatial structure), c) unstable branch reconstructed from measuring the sep-
aratrix as indicated in panel a). [Reprinted figure with permission from Schreiber
et al. (1997). Copyright 1997 of Elsevier.]

1.3 Basic equations

Conservative solitons in Kerr media are described by the well-known Nonlinear
Schrödinger Equation (NLS). The NLS assumes an infinite nonlinear medium
(Fig. 1a). Real nonlinear optical media have finite dimensions and (except in
glass fiber) solitons can rarely propagate more than a few centimeters before
running out of material. To increase the propagation length it is therefore
convenient to place mirrors at the ends of the medium, thus confining the
soliton into a finite slab of material (Fig. 1b). With perfect reflection and
zero absorption, one could indeed confine a soliton in such a “box” Firth and
Harkness (1998). Real mirrors and materials are lossy, but we can make good
the loss by “feeding” the caged soliton with an input field. We are thus led to
consider a perturbed NLS:

i
∂E

∂t
+

∂2E

∂x2
+ |E|2 E = iε(−E − iθE + EI) (1)

The terms on the left are standard NLS terms, describing respectively evolu-
tion, diffraction and (Kerr) nonlinearity. Note that use of adimensional units
for both space and time is implied. The three terms on the right side are per-
turbations of the NLS, all small if ε is. The first is just a linear loss (assuming
ε > 0), and the last is the driving field EI needed to sustain E against that
loss. The middle term, in θ, is less easy to understand, but we must remember
that coherent light confined between mirrors lies within an optical cavity, and
so the response to the driving field will strongly depend on whether or not it
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is in resonance with the cavity. Hence, therefore, the presence of θ, the cavity
mistuning. If we ignore the left side of (1), then E = EI/(1 + iθ), showing
that the cavity has a resonance Lorentzian in θ. This is appropriate for a high
finesse cavity, where just a single longitudinal mode may be considered. There
is one further change from the usual spatial-soliton NLS: propagation (in z) is
replaced by evolution (in t). This is natural: the soliton is now in a box, and
not going anywhere.

We now set ε = 1, which is equivalent to a re-scaling: in particular it implies
that time is scaled to the decay time of the cavity. This yields the Lugiato-
Lefever (LL) equation, which was originally introduced Lugiato and Lefever
(1987) as a model for pattern formation. The NLS limit is recovered as θ →∞.
The LL equation is a mean-field model. The term ‘mean-field” arises because
such models are usually derived by assuming a high finesse, so that the cavity
field is approximately constant along the cavity axis. The high finesse allows
the Airy function response of the cavity to be approximated by a single longi-
tudinal mode, giving the Lorentzian resonance mentioned above. In practice,
mean-field approaches apply much more widely, and usually provide a suitable
description of the system evolution at any suitably-chosen reference plane. In
most cases, a plane within or at the boundary of the nonlinear medium is a
suitable reference plane (Figs. 1c, d).

Although some experiments can be described by the LL-equation, at least
to some extent, most experiments with cw driving utilize a resonant or near
resonant nonlinearity. Then higher order nonlinearities than the third are im-
portant, and the situation is better described by a saturation term than by
a series expansion. In addition, absorption and gain might play a role. Early
analysis of SDS formation in a two-level model with a mixed absorptive and
dispersive nonlinearity is given in Tlidi et al. (1994), and for the purely ab-
sorptive case in Rosanov and Khodova (1990); Firth and Scroggie (1996);
Brambilla et al. (1996). In addition, the medium response might be slower
than the dynamical variation of the intra-cavity field, calling for an explicit
equation of motion describing the dynamics of the medium. We are going to
deal mainly with semiconductor models, where the dynamical variables are the
intra-cavity optical field E in the VCSEL and the carrier density N . However,
the level of description is such that N can be also thought of as the inversion
in a two-level model (after suitable rescalings). Obviously, this model does not
capture all peculiarities of the semiconductor nonlinearities (e.g. Chow et al.
(1994)) but has proved to be suitable to describe the experiments in Barland
et al. (2002); Hachair et al. (2004) (see Fig. 2) as well as other cases we will
encounter in this review. The complete system is described by the following
system of coupled partial differential equations Spinelli et al. (1998); Barland
et al. (2002); Michaelis et al. (1997):
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∂tE =−(1 + iθ)E + i∇2E − iσ(α + i)(N − 1)E +
2
√

T1

(T1 + T2)
F

∂tN =−γ
[
N − J + |E|2(N − 1) + D∇2N

]
(2)

Here, σ is a coupling constant (a differential gain factor), α is the linewidth
enhancement factor describing phase-amplitude coupling in a semiconductor.
It corresponds to a detuning in a two-level situation. Typical measured val-
ues for α are in the range 1.5-8 Henry (1982) (α = 5 is assumed in many
simulations, here and elsewhere Hachair et al. (2004)). α = 0 corresponds to
a purely absorptive nonlinearity, α >> 1 to the dispersive limit. T1 and T2

are the transmittivities of the VCSEL mirrors. The parameter J represents
the injection current, normalized to the value at transparency. Time is scaled
to the VCSEL cavity lifetime, and γ is the ratio of cavity lifetime to carrier
response time in the VCSEL (γ ≈ 0.01). The term D∇2N describes carrier
diffusion but will generally be omitted in what follows.

In the context of the amplifier experiment (Fig. 2) F denotes the external
injection due to the HB. It can be F = F (x, y, t) in order to describe spatial
modulations of the HB (see mainly Sec. 6) and the action of the WB. In many
formulations of the model, e.g. in (1), the internal value EI of the driving field
is used directly instead of the extra-cavity field amplitude F . In the context of
the laser with feedback discussed in Sec. 3.3.3, F will represent the feedback
field, F = F (E(x, y, t)).

Obviously, single-mirror feedback systems and LCLV are not described by
these equations though the medium equation can be quite similar. We refer
to the specialized literature here D’Alessandro and Firth (1991); Neubecker
et al. (1995); Ackemann and Lange (2001); Ackemann et al. (2001).

1.4 Bistability and Multi-stability of SDS

A cavity soliton or SDS is a stable, self-localized optical excitation sitting on
a uniform, or quasi-uniform, background, and substantially independent of
transverse boundary conditions. A key property is that it can be present or
absent under the same external conditions, i.e. it exhibits bistability between
“off” and “on” states. In this introductory discussion we sketch some basic
features which follow from these properties, both for a single isolated SDS
and, importantly for practical applications, for multiple SDS. In Sec. 2 we
will develop these properties in more detail, and for specific systems. We will
discuss scenarios generic for dissipative solitons, such as homoclinic snaking,
but also the limitations and modifications to such scenarios in the context of
SDS in real systems.
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Fig. 5. Schematic existence diagram for excitation of independent SDS, each of
“power” P1 in an optical cavity, as a function of the parameter Q (see text). Solid
lines are stable structures, dotted lines indicate the separatrix for switch on and
off of each SDS, dashed arrow the minimum power perturbation needed to create a
SDS within the stable range.
To begin, we consider the existence, stability and excitation of a single SDS.
By assumption, for any suitable externally-controlled parameter Q there is a
range of values over which both the one-SDS and no-SDS states are stable. For
definiteness, assume that small values of Q correspond to weak nonlinearity.
Since a SDS is an intrinsically nonlinear object, there will be a minimum
value, say QA, below which no SDS exists. We also expect that there will be
a maximum value QB, above which either no SDS exists or any SDS which
does exist is unstable. Since all SDS are identical, and distinguishable from
the background, we must be able to define a “power” measure P , such that a
single SDS has power P1, and n have power nP1. We have set the background
“power” to zero, which can always be done by subtraction. We will assume
P1 positive, though the physical power of a dark soliton would actually be
negative. We thus arrive at a schematic P vs Q diagram (Fig. 5) consisting of
a set of parallel lines, spaced by intervals P1 and extending from QA to QB,
the first rung corresponding to a single SDS, the second to two, and so on.
In a real system, of course, the rungs would be neither exactly horizontal nor
exactly straight (Fig. 4b), but that does not matter in the present context of
a qualitative discussion.

We now consider the dynamics of excitation and erasure of SDS, beginning
with the latter. Since the SDS ceases to exist at QA, it is reasonable to suppose
that a small negative perturbation to its power will cause its decay when Q is
only just above QA. At any value of Q in this neighborhood, one can envisage
finding the minimum perturbation necessary to kill the SDS, and tracing the
power of this minimally-perturbed SDS as a function of Q. Since the required
perturbation is infinitesimal at QA, but increases with Q as the SDS becomes
more stable, this “switch-down” power curve will have the general form of the
dotted line falling away from the lowest rung of the “ladder” in Fig. 5. In
fact, exactly such a curve was traced experimentally in an LCLV system, as
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discussed earlier and shown in Fig. 4b. As mentioned, the dotted line in Fig.
5 tracks a separatrix between the basins of attraction of the no-SDS and one-
SDS states, and the state lying exactly on the separatrix is another, unstable,
SDS. It can be observed experimentally, as we have seen, but is also easily
found numerically in model systems Firth and Harkness (1998); McSloy et al.
(2002). In both cases the unstable SDS is actually metastable, in the sense
that the decay times of structures close to it increase dramatically the closer
they approach the exact unstable SDS – see Fig. 4a and (Schreiber et al.
(1997); McSloy et al. (2002)). It is also found that, just as a structure with
slightly lower power than the unstable SDS will decay into the background,
conversely one with just slightly greater power will grow to form a stable SDS.
The separatrix thus plays a key role in creating, as well as erasing, SDS.

Next, consider the behavior of the separatrix as Q is increased. At some point
it will generally cross the line P = 0, at QC , say. At QC , therefore, any in-
finitesimal perturbation of the background state will grow. It follows that QC

cannot be less than QB, since by assumption the single SDS, including its
background, is stable up to QB. Normally QC is finitely greater than QB or,
equivalently, at QB the separatrix lies at a finite power PS above zero. In such
a case, in order to create a stable SDS one must perturb the system strongly
enough to induce a suitably-shaped structure with power at least PS. Hence
stable SDS should not appear spontaneously on increasing a control parame-
ter such as Q. In addition, if one or more well-separated SDS are present in
the system, then QA < Q < QB, and so creation of an additional indepen-
dent SDS again requires a finite minimal perturbation equivalent to PS. Nor,
therefore, should SDS multiply, simply on increase of a control parameter. On
this scenario, therefore, the bifurcation diagram for multiple independent SDS
should be a kind of “disjointed snake”, as sketched in Fig. 5, with the gaps
indicating the need for “hard excitation” to jump upwards from rung to rung.

The form of Fig. 5 naturally prompts one to ask what happens outside the
range QA ≤ Q ≤ QB. Below QA there are no SDS, and so the background
seems to be the only candidate state, and it is stable. Above QB the same
applies, but we already mentioned that the background is necessarily unstable
above QC . We can’t conclude anything about that region from the present
outline model, but note there are many possible states which lie outside its
scope, such as regular patterns.

How does this sketch compare with experiment, and with more quantitative
theoretical models? We will address this question in some detail in Sec. 2, but
it is worthwhile to have an initial discussion at this point. Considering models
first of all, our picture is essentially confirmed, except that model studies
do not usually consider excitation of well-separated SDS, but rather what
might be regarded as close-packed clusters of SDS (Coullet et al. (2000); Burke
and Knobloch (2006)). On the experimental side, our sketch scenario again
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corresponds to some observed features, see, e.g., the single-SDS hysteresis
loops in Fig. 4b, and also (for stable branches only) Fig. 17 in Section 3 and
Tanguy et al. (2008a); Barbay et al. (2008). Perhaps the main issue is that SDS
in experiment often appear spontaneously, on increasing a control parameter,
multiplying on further increase. Again, detailed discussion is deferred to Sec. 2,
but it is worth listing some possible reasons for this discrepancy. First, and
most obviously, experimental systems have finite size and limited uniformity.
Gradients and fluctuations in Q can be reduced as far as possible, but can
never be wholly eliminated. If the range of variation exceeds QC − QB, one
might envisage spontaneous appearance of SDS occurring. It is not enough,
however, that QC locally drops below the average QB: QB will presumably also
be affected by the gradient or fluctuation. Spontaneous appearance of stable
SDS can only be enabled if QB is reduced significantly less than QC or, better
still, QB actually increases as QC decreases. This cannot be ruled out, but
such behavior would clearly be strongly dependent on both the system and
the control parameter used. Thus parameter gradients and fluctuations are
not per se an explanation for spontaneous generation of SDS, and have to be
investigated on a case-by-case basis. Other possibilities ought to be considered
also. For example, if there is a long-range inhibitory interaction between SDS,
it will be harder (in a finite domain) to induce each additional SDS: sequential
spontaneous appearance of SDS on parameter variation might then be possible
(Firth et al. (2007a,b)).

Whatever the cause, we note that in any application in which each SDS acts
as a “bit” of information, or the “on” state of a binary image pixel, any
spontaneous generation of a SDS constitutes an error. The mechanisms for
spontaneous generation (or decay) must thus be understood and controlled
in any application. In fact, a functional system should behave just like in
Fig. 5, with stable existence of (0,1,2,3,...) SDS over a single (broad) range of
control parameter, coupled with the need for a finite, fairly large, perturbation
to create a new SDS/bit. An operating point midway between QA and QB

would ensure that existing SDS are also robust against perturbations, while
the system can be “wiped” (all SDS destroyed) by sweeping Q below QA and
back again.

2 Existence, Bifurcation Structure and Dynamics of Single and
Multiple SDS.

The existence and basic properties of SDS in driven optical cavities is discussed
in this Section. As a starting point, the link between SDS and patterns, in
particular so-called homoclinic snaking, is outlined. In the theory, SDS should
exist only below the threshold of a subcritical modulational instability, but in
experiment they often appear spontaneously on parameter variation. Among

12



the possible reasons are experimental imperfections and limitations, and so
we briefly discuss how finite system size, stray spatial gradients, and fluctua-
tions of parameters might affect snaking. To do so requires a discussion of the
response of SDS to the “forces” exerted by such parameter variations, and we
show how the neutral or “Goldstone” mode related to translational invariance
dominates the dynamics of the solitons. As mentioned in 1.4, spatial imper-
fections do not necessarily account for spontaneous generation of SDS, and we
discuss alternative explanations, such as an additional nonlocal nonlinearity,
for the observed “tilted snakes”.

The bifurcation structure and dynamics of SDS in lasers is, in several respects,
qualitatively different from that in driven systems, and is reviewed in Sec. 3.

2.1 Patterns, Dissipative Solitons and Homoclinic Snaking

As mentioned in Sec. 1, pattern formation is a widespread consequence of non-
linearity in spatially-extended systems. When a parameter is varied in model
simulations, typically a pattern appears spontaneously at the modulational
instability (MI) threshold. The pattern may grow smoothly from small ampli-
tude, but sometimes there is an abrupt switch into a large-amplitude pattern.
This persists as the parameter is reduced back below the switching threshold,
until an abrupt collapse to the unpatterned state at a saddle-node (SN) bifur-
cation. In such subcritical cases (Cross and Hohenberg, 1993), both patterned
and unpatterned states are stable over a finite parameter range, between SN
and MI. In this review we are concerned with nonlinear optical systems, and
we will base our discussion on the typical VCSEL model (2) introduced ear-
lier. In the first instance we are primarily interested in systems driven by a
monochromatic input field, ideally homogeneous in the transverse direction,
and in steady-state or slowly-varying system responses. We therefore simplify
our system by (crudely) eliminating the population dynamics so as to obtain
a single field equation:

∂E

∂t
= −(1 + iθ)E + i∇2E +

µ(1− iα)

1 + |E|2 E + EI , (3)

where µ = σ(J − 1) and EI is the effective driving field.

This equation has one or more homogeneous steady-state solutions E0. For
many purposes the intensity parameter I = |E0|2 is a more convenient drive
parameter than the input field EI itself, and we will often use it as such below.
For a localized state, I is just the intensity of its homogeneous background
field. For some purposes it is convenient to define a zero-background field A
by E(r, t) = E0(1+A(r, t)). Then, for example, MI occurs when the linearized
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equation for A has net gain at some transverse wave vector. The so-called crit-
ical wavevector kc is that which becomes unstable at the MI threshold, i.e. the
smallest value of I for which MI occurs. Pattern formation will thus, at least
initially, occur at kc, but as I is increased beyond threshold all wavevectors in
a band around kc become unstable. Note that for I >> 1 the nonlinear term
in (3) becomes small as the nonlinearity saturates, and so there must be an
upper MI threshold at which E0 stabilizes. The associated critical wave vector
need not equal kc.

Pattern formation in this model has been studied in detail in two important
limits. Expanding the saturation denominator and truncating at the first non-
trivial term, and also neglecting the nonlinearity of gain/loss, essentially yields
Eq. (1). We will examine this “Kerr cavity” limit later, but first we consider
a different limit, in which the dispersive nonlinearity is dropped, i.e. we set
α = 0 in (3). The equation then models a saturable amplifier or absorber in a
cavity, depending on whether the gain µ is respectively positive or negative.

The absorber case (−µ = 2C > 0) has been extensively investigated in rela-
tion to patterns and cavity solitons Firth and Scroggie (1994, 1996); Brambilla
et al. (1996); Harkness et al. (2002)). State diagrams for stripe and hexagon
output patterns are shown in Fig. 6 as a function of the intensity parameter
I and relative wavevector k/kc. An attractive feature of this model for nu-
merics is that the critical wavevector is simply given by k2

c + θ = 0, which
means that the system compensates for the detuning of the cavity by tilting
the intracavity wave. Of course this is possible only on one side of the cavity
resonance: for positive θ there is no MI, only plane-wave optical bistability
Lugiato (1984). Further, because there is no nonlinear index change, the cav-
ity resonance frequency is independent of intensity. This simplifies numerical
work, since there is no need to change computational parameters like space-
step and box-size to adapt to changes in the critical wavevector. The dynamics
also tends to be rather simple, with no Hopf bifurcations, which means that
homoclinic snaking is not masked by other dynamical instabilities. This is il-
lustrated in Fig. 6, where the patterns are stable over a large range of both
intensity and wavevector (the white regions, termed “Busse Balloons”). In-
stability arises only for wavevectors too different from kc, or where a pattern
of different symmetry becomes more stable, e.g. on the curve labeled Irh in
Fig. 6a, where rolls (stripes) transform into hexagons. (In 2D, all wavevectors
on a ring of radius kc become unstable at threshold, leading to competition
between patterns of different symmetry.)

System (3), with the parameters of Fig. 6, i.e. C = 5.4, θ = −1.2, shows
MI to patterns with wavevector kc with threshold IMI , the smaller root of
(I +1)2 = 2C(I− 1). For these parameters I is a single-valued function of EI .
Our present interest is not patterns themselves, but localized states such as
SDS, including states which resemble finite domains of regular patterns sitting
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Fig. 6. Existence diagrams for (left) stripes and (right) hexagons for a saturable
absorber in an optical cavity, as a function of the intensity parameter I and relative
wavevector k/kc, where kc is the critical wavevector. C = 5.4, θ = −1.2. In each case
the MI threshold line is labelled. Between its minimum and the saddle-node (SN)
lines (lowest curves) the pattern is subcritical. Shading indicates various instabili-
ties: hexagons are stable over a broad band of wavevectors; stripes are less stable,
and hexagon-unstable below the Irh curve. [Reprinted figure with permission from
Harkness et al. (2002). Copyright 2002 of the American Physical Society.]

on a smooth background with intensity I. Such states can be stable only if
that background is stable, whereas arbitrarily-large domains of pattern cannot
be expected to be stable if the infinite pattern is not. Hence we are naturally
led to consider the case of a subcritical pattern, where both patterned and
unpatterned states can exist and be stable for the same parameters and the
same input field. As Fig. 6 shows, this happens over a considerable range of
input fields lying below the MI threshold. Here, as is typical, the lower end of
the coexistence range is marked by a saddle-node bifurcation (SN), at which
the patterned state collides with a third state, an unstable pattern, and ceases
to exist.

The obvious next question relates to competition between the patterned and
unpatterned states in the same spatial domain. At their common boundary
there will be a front, a localized structure which asymptotes to the flat state
in one direction, and to the patterned state in the other. Two such fronts
“back-to-back” would resemble the sort of localized state we have in mind (in
one transverse dimension), while in 2D a front which closes around on itself to
form a loop would resemble an “island” of pattern. The smallest such island
would be a single spot of a hexagonal pattern, and this, in essence, is a cavity
soliton (SDS).

There is a potential problem, however, in that fronts between coexistent states
tend to move. As discussed in detail in Sec. 5, the more stable state typically
invades and destroys the less stable one, so that the front is stationary only
at the “Maxwell point” where the two states are equally stable. In the next
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Fig. 7. ”Cracked” hexagon pattern showing existence of large scale locked fronts
between the patterned configuration and the flat background. [Reprinted figure with
permission from Harkness et al. (2002). Copyright 2002 of the American Physical
Society.]

subsection 2.1 we will see that the pattern-flat front behaves differently, and
is typically stationary over a “Maxwell range”. Further, localized states are
closely associated with this parameter range, throughout which the patterned
and unpatterned states can stably coexist. Fig. 7 illustrates such coexistence
for the saturable absorber model Harkness et al. (2002). It was found that
hexagons invade the flat state whenever I exceeds about 85% of its MI thresh-
old value. For a range of smaller I a “cracked” hexagon pattern, i.e. islands of
hexagons with flat-state between, was found to be stable, clearly illustrating
stably locked fronts (Fig. 7). Note that there are one or two cases of single-spot
islands, i.e. SDS.

The rest of this section is organized as follows. In subsection 2.2 we introduce
the phenomenon of homoclinic snaking, which is the typical scenario for the
occurrence of sequences of SDS in systems showing subcritical pattern for-
mation. In subsection 2.3 we outline some of the general properties of SDS,
including their dynamical response to perturbations of various kinds. Then in
subsection 2.4 we present and describe specific cases of homoclinic snaking as
found in several basic optical models related to (3), and discuss the applicabil-
ity or otherwise of homoclinic snaking to real, finite and imperfect, photonic
systems. In particular, we will discuss the fact that experimental “snakes” tend
to be tilted, rather than vertical. In other words, localized states with differ-
ent numbers of peaks tend to exist over staggered parameter ranges, rather
than all existing within the same range as the theory of homoclinic snaking
implies. In subsection 2.5 we show that augmenting the usual models with a
nonlocal (in our example, global) coupling can induce a tilt in the homoclinic
snakes. Such a nonlocal effect might perhaps explain the occurrence of SDS,
rather than a pattern, as the first nonlinear structures to appear when the sys-
tem is driven beyond MI threshold. We also discuss the effect of finite-range
nonlocality, mediated by a symmetric kernel, which favors the appearance
of well-separated simple solitons, rather than soliton complexes. We finally
consider some physical mechanisms for the sort of nonlocal or quasi-global
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nonlinearity which could account for the spontaneous appearance of SDS in
experiments.

2.2 Homoclinic Snaking

Localized states in models where a pattern is in competition with a homoge-
neous state have been the subject of intense recent interest, for example in
(Akhmediev and Ankiewicz (2005a); Champneys (1998); Nishiura and Ueyama
(1999); Coullet et al. (2000); Firth et al. (2002); McSloy et al. (2002); Coullet
et al. (2004); Clerc and Falcon (2005); Kozyreff and Chapman (2006); Burke
and Knobloch (2006); Gomila and Oppo (2007); Burke and Knobloch (2007);
Lloyd et al. (2008); Dawes (2008)). Key to this work is Pomeau’s demonstra-
tion (Pomeau, 1986) that the interface between a pattern and a flat state can
be stationary over a finite parameter range, the “locking range”. To see why
this should be so, consider the asymptotic approach of a stationary front to
the flat state. Dropping the time derivative, and linearizing Eq. (3) around
the homogeneous solution, we obtain a second-order differential equation in
E, E∗, which yields a quartet of complex spatial eigenvalues ±γ ± iK. We
must therefore expect that a front emerging from the flat solution in, say, the
+x direction will have components growing like both e(γ+iK)x and e(γ−iK)x.
Interference of these two components then implies that the front’s field mag-
nitude will oscillate around the flat-solution field with wavevector 2K, with
exponentially-growing amplitude, eventually matching (nonlinearly) on to the
patterned state (Coullet et al. (2000); McSloy et al. (2002)).

Motion of such a modulated front is clearly going to be quite different from
simple translation. It essentially involves nucleation of a new peak (for the
case of invading pattern) or destruction of a peak (invading flat state). As
a result, there is a finite parameter range around the Maxwell point, within
which a modulated front remains at rest (Pomeau, 1986). For a system ex-
hibiting a locked front between patterned and unpatterned states, Coullet et
al. (Coullet et al., 2000) proved the appearance, around the locking range and
hence between SN and MI, of a multiplicity of localized states, which resem-
ble subsections of the pattern. Similar scenarios were previously identified for
localized buckling Champneys (1998) and self-replicating patterns (Nishiura
and Ueyama, 1999). The proof uses “spatial dynamics”, dynamical systems
theory applied to the spatial domain. It has two key ingredients. Firstly, there
should be at least two spatial eigenvalues with positive real part, which we
have seen is satisfied in driven–cavity optical systems. Secondly, patterns with
a range of wavevectors should exist. This is normally satisfied throughout the
pattern-existence range, except exactly at the MI and SN points. This is im-
portant because, as the control parameter is varied, the effective wavevector
of the localized pattern has to vary to maintain the exact matching on to the
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Fig. 8. Bifurcation diagram of 1D (left panel) and 2D (right panel) SDS. Displayed is
the integral norm of localized structures against intra-cavity background intensity
I = |E0|2. Inset on the right are examples of 2D SDS clusters corresponding to
the positive stable branches. [Reprinted figure with permission from McSloy et al.
(2002). Copyright 2002 of the American Physical Society.]

flat state. It follows that these “pieces of pattern” do not, in general, have
period 2π/kc.

In one spatial dimension (1D), there are typically two sequences of SDS, with
respectively even and odd numbers of peaks. The left panel of Fig. 8 demon-
strates this phenomenon for the saturable absorber model of Fig. 6. Within
each sequence the energy (or other norm) characteristically “snakes” upwards,
zig-zagging to and fro across the locking range, adding a pair of peaks on each
positive-slope ”zig”, while the connecting negative-slope ”zags” are always
unstable. Because all of these SDS are homoclinic to the flat state, the phe-
nomenon illustrated in Fig. 8 is often termed homoclinic snaking. (See Burke
and Knobloch (2006) for a comprehensive account of homoclinic snaking in a
Swift-Hohenberg model.)

Note the general similarity to the “proto-snake” diagram, Fig. 5, conjectured
in Sec. 1.4. The main difference (two snakes, not one) arises because our earlier
discussion related to widely-separated, non-interacting solitons, whereas the
theory of homoclinic snaking is for close-packed, and thus interacting, soli-
ton complexes. Suppose we have two well-separated solitons. While we could
attempt to switch off just one, as we discussed, we could also apply a per-
turbation to each, and switch off both. The latter is nicely symmetrical, and
furthermore is well-defined as the two solitons are brought closer together
and so into interaction. Symmetric addition of a pair of solitons is similarly
insensitive to separation. Thus a proto-snake based on switching pairs of well-
separated solitons goes over, as separations are decreased, into the “even”
homoclinic snake instanced in Fig. 8. The “odd” snake is similar, except that
one obviously can’t remove two solitons when there is only one left.
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Is there an equivalent in close-packed structures of adding or removing just one
peak? Indeed there is: Burke and Knobloch (2007) recently showed that the
two snakes are connected by a “ladder” of symmetry-broken states. The asso-
ciated bifurcations all lie on the negative-slope parts of the snakes, however,
which are unstable. As a consequence these symmetry-breaking switches are
not commonly observed in the usual models. As we will see, however, addition
of a global or long-range nonlocal interaction can shift the symmetry–breaking
bifurcations onto the positive-slope branches, so that direct one-peak to two-
peak switching becomes observable (Firth et al., 2007b).

As the number of peaks increases up the snake, the SDS resembles the coexis-
tent patterned states ever more closely, and its approaches to the flat state on
each wing asymptote to the pair of stationary fronts which characterize the
locking range between the flat state and one of the patterned states (Coullet
et al. (2000); Burke and Knobloch (2006)). In this regime, the snaking can
be quantified by asymptotic theory (Clerc and Falcon (2005); Kozyreff and
Chapman (2006)). Our main interest here, however, is in the few-peak SDS
clusters forming the lower portions of the snakes. In the model systems to
which the above theory (Coullet et al., 2000) applies, their existence range
is smaller than, and lies wholly within, the range (SN,MI) over which both
patterned and unpatterned states are stable: see Figs. 6, 8, for example. To
observe such SDS it should therefore be necessary to place the control pa-
rameter within the snaking range, and apply a local excitation in the form of
an address pulse. Under appropriate conditions, the system will evolve during
and after the address pulse in such a way as to end on the desired “zig” of
the snake. (To generate the SDS and multi-SDS shown in Fig. 8 the system
was initialized with a structure similar to that being targeted, and a New-
ton method used to converge to the nearest stationary state, which somewhat
resembles the address-pulse procedure (McSloy et al., 2002).)

If the localized states which form the snakes are domains of pattern embedded
in the flat state, it is should be no surprise that there is a dual scenario for
defect states, i.e. that there are localized islands of the flat state embedded
in an infinite extended pattern (Coullet et al. (2004); Burke and Knobloch
(2007)). The dual of the isolated SDS is a single missing cell of the pattern,
and there are a pair of snakes corresponding to even- and odd-numbered clus-
ters of defects. Coullet et al. (2004) conjecture that if there is a parameter
range within which both the SDS and the single defect exist and are stable,
then all possible defect structures exist and are stable. By this is meant that
such a periodic pattern can be regarded as a close-packed array of SDS, and,
further, that any or all of these SDS can be removed without destabilizing the
remaining structure. If so, then the lattice has a full binary memory function,
with each of its sites able to be independently set to “1” (one SDS), or “0”
(no SDS).
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It is necessary to remark that the theory of homoclinic snaking is strictly ap-
plicable only in one spatial dimension (1D), because it is built on the powerful
methods of reversible dynamical systems theory, using the “spatial dynamics”
analogy between time and 1D space. Nevertheless, localized states sitting on
a flat background can only be stable if that background is stable, regardless
of spatial dimensionality. Equally, a locking range between a flat solution and
a co-existent pattern (e.g. hexagons) can also be expected in 2D if the pattern
is subcritical, as already illustrated in Fig. 7.

It is therefore no surprise that 2D SDS are found in such model systems, in
association with a locking range, and existing only well below MI. The right
panel of Fig. 8, again for the saturable absorber model, shows the low-order
bifurcation structure of 2D localized states. These include structures with a
single peak (SDS), and also linear, triangular, and rhombic clusters which
look like bound states of SDS units. There is increasing interest in the theory
of 2D snaking, in particular Lloyd et al have studied snaking of localized
hexagonal patterns in a Swift-Hohenberg model (Lloyd et al., 2008). This
exhibits whole families of snakes, in contrast to the comparatively simple two-
snake structure in 1D. Even so, localized hexagons are still a special and rather
simple case compared to the random 2D assemblies of 1s and 0s which are
possible in the functional-memory regime. While snaking bifurcation diagrams
could in principle be constructed in such a case, it seems improbable that any
worthwhile insight could be gained from doing so.

2.3 Basic Properties and Dynamics of SDS

At this point it is appropriate to look in a little more detail at the structure and
basic properties of these cavity solitons, whose behavior is in fact typical of a
wide class of dissipative solitons. As for the case of a front, their spatial decay
to the flat solution has to be a superposition of two complex exponentials with
the same real part, and so exhibits spatial modulation. In 1D the envelope of
this modulation is roughly, though usually not exactly, a sech function. In 2D
the SDS is asymptotically a generalized Bessel function, and the modulation
takes on the appearance of a set of rings around the central peak: see, for
example, Fig. 3 and the insets of Figs. 4b and 8b.

Turning now to dynamics, by definition a stable SDS has no linear perturba-
tion eigenmode whose eigenvalue has positive real part. However, an ideally
homogeneous broad-area device possesses translational symmetry. Hence a
SDS can be placed anywhere, and no energy is needed to move it around.
Mathematically, this is manifested by the fact that the SDS always has lin-
ear mode, ~u0, with zero eigenvalue. This eigenvector is proportional to the
gradient of the SDS profile. Such symmetry-related neutral modes are also
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referred to as “Goldstone” modes. Note that translational (and rotational)
Goldstone modes, and many aspects of the effects of drift and pinning dis-
cussed later in Sec. 6, are not confined to SDS but apply to any self-organized
patterns which spontaneously break the translational symmetry (Haelterman
and Vitrant (1992); Grynberg (1994); Seipenbusch et al. (1997); Dawes et al.
(2005)).

As mentioned, in a laser there is also a phase symmetry, which gives rise
to a Goldstone mode proportional to the SDS itself, which we will discuss
further in Sec. 3. For a stable SDS in a driven cavity system, however, all
other eigenvalues have negative real part, by definition. This means that, as
t → ∞, the amplitude a0 of the neutral mode dominates over all other ai.
Thus the dynamical effect of any perturbation ~p to a stationary stable state
is primarily determined by its projection on to the neutral mode. The field
equation linearized around the SDS is not usually self-adjoint, so its modes
are not mutually orthogonal, but are biorthogonal to the modes of the adjoint
equation. Hence ~v0, the adjoint of the neutral mode, acts as the projection
operator on to the neutral mode, because it is orthogonal to all other linear
modes of the SDS. The projection operation is equivalent to the usual inner
product, which yields the equation Maggipinto et al. (2000):

da0

dt
=

1

< ~v0 | ~u0 >
< ~v0 | ~p > . (4)

The denominator makes this equation normalization-independent. Like ~u0,
its adjoint is an odd function of space, and so only perturbations which are
asymmetric at the SDS position couple to the neutral mode. In particular, at
any extremum of the perturbation the coupling vanishes.

Because the neutral mode is just the gradient of the SDS, physically da0/dt is
the translational velocity of the SDS under the influence of the perturbation.
Obviously the motion of such a SDS under the influence of an external force
is not Newtonian, but overdamped (Aristotelian). It is also clear that the
motion under this dynamics is simple and limited: the SDS moves up (or
down) any finite gradient, at a speed proportional to that gradient. Thus
it can asymptotically approach, but never pass, a point where the gradient
vanishes. In particular, it cannot oscillate around such a point. In essence, it
acts like a particle with no inertia.

Perturbations to the SDS can be classified into three main types: (i) intentional
or unintentional parameter variations, (ii) spatial or spatio-temporal noise,
and (iii) perturbation of one soliton by another. Important examples for case
(i) are phase and amplitude gradients or modulations of the driving field,
which can be used to control SDS motion and positioning (Rosanov, 1991;
Firth and Scroggie, 1996; Rosanov, 1996; Spinelli et al., 1998; Maggipinto
et al., 2000). Such situations are discussed in detail in Sec. 6. The device
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inhomogeneities already mentioned, if they are large-scale perturbations, can
be thought of as parameter gradients, and thus belong also to this class. Small-
scale inhomogeneities are a kind of disorder, and so can be thought of as ‘frozen
spatial noise’, and thus of type (ii). Typical dynamics in case (i) will consist of
SDS drift on the gradient until the gradient falls to zero, and the drift stops.
If there is spatial noise, the SDS may encounter a fluctuation large enough to
cancel the parameter gradient, and be trapped. (In 2D, material defects can
deflect SDS, not just trap them.) Spatio-temporal noise, for example input-
field fluctuations, will couple to the neutral mode and lead to an erratic motion
of the SDS, even in an otherwise ideal system Firth and Scroggie (1996);
Spinelli et al. (1998). If the noise spectrum is white, the motion is diffusive.

For case (iii), we noted that the asymptotic field amplitude of a SDS is modu-
lated, so that the “force” it exerts on a nearby SDS oscillates as a function of
separation, with maxima and minima. It follows that there is a discrete set of
separations at which two SDS can be stably at relative rest, i.e. 2-SDS bound
states. These have been observed in the Na-vapor feedback system (Schäpers
et al., 2000), see Fig. 3. Since the modulation depth decays exponentially with
distance, the binding rapidly weakens, and will become unobservable once the
inter-SDS force becomes smaller than the typical values of the forces of types
(i) and (ii).

2.4 Snaking in other optical models

We now consider snaking in other variants of (3), comparing and contrasting
with the saturable absorber model already examined (Scroggie et al. (1994);
Firth and Scroggie (1996); Brambilla et al. (1996); Harkness et al. (2002);
McSloy et al. (2002)). As a second variant, we consider the Kerr cavity problem
of Eq. (1) already mentioned (Lugiato and Lefever, 1987).

For the saturable absorber, we examined homoclinic snaking only in one pa-
rameter (I), but snaking also occurs vs θ, or indeed combinations of these
parameters. The full picture for the Kerr cavity is illustrated in Fig. 9, where
we reproduce the projections on to the (I, θ) plane of the SN lines lines cor-
responding to low-order localized states (Gomila et al., 2007). Since these SN
lines are the signature of snaking, this diagram is a reminder that homoclinic
snakes are in fact one-dimensional sections of a multiply-folded surface in a
parameter space which in general has several dimensions (here, for the Kerr
cavity, two).

As a third example of snaking in an optical model we consider a broad-area
VCSEL, driven by an external coherent field and containing a bulk layer of
GaAs as the active medium Tissoni et al. (1999a). The dynamical equations
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Fig. 9. Projection in the (I, θ) plane of the saddle-nodes for low-order localized
states found in the Kerr-cavity. [Reprinted figure with permission from Gomila
et al. (2007). Copyright 2007 of Elsevier Science.]
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Fig. 10. Homoclinic snaking in a bulk semiconductor microresonator model Firth
et al. (2007a). Against the intensity parameter I is plotted the excess spatially-av-
eraged intensity for the various localized states. The uppermost curve represents a
coexistent roll pattern, see Maggipinto et al. (2003). [Reprinted figure with permis-
sion from Firth et al. (2007a). Copyright 2007 of the American Institute of Physics.]

governing the electric field inside the cavity and the carrier density of the
active material are very similar to Eq. (2).

This model has been extensively analyzed both in 1D and 2D Tissoni et al.
(1999b); Maggipinto et al. (2000, 2003); it exhibits plane wave instability and
MI for a wide range of parameter choices and injection frequencies. For the
parameters of Fig. 10 the steady state curve of the homogeneous solution is
bistable, and there is a branch of stable SDS asymptotic to the lower sta-
ble homogeneous solution, and associated with a band of subcritical pattern
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Fig. 11. Pattern front shifting as the injection intensity is increased, in a VCSEL
amplifier. J=180 mA, Pinj from 1 mW (lowest in the graph) to 8 mW (highest).
The different curves have been offset for clarity. [Reprinted figure with permission
from Hachair et al. (2004). Copyright 2004 of the American Physical Society.]

solutions. This is the only full VCSEL model for which multi-peak localized
states have been studied in detail. Fig. 10 shows typical homoclinic snaking,
strongly suggesting that snaking and related theory is robustly applicable to
semiconductor cavities, including VCSELs.

We will now examine the experimental situation with regard to patterns and
snaking in broad-area VCSEL amplifiers. Since snaking theory depends heavily
on the locking of the front between a stable flat solution and a coexistent sta-
ble pattern, we first consider experimental evidence on front behavior. Hachair
et al. (2004) present a rather impressive sequence of stationary fronts (Fig. 11),
corresponding to several different values of the ampltitude of the driving field.
There is a well-defined front, which moves across the VCSEL aperture as the
input field is increased. At first sight this is unexpected. In an ideally homo-
geneous VCSEL, we should expect MI on suitable variation of any parameter,
such as input field. Once the MI threshold is reached, pattern should form, and
should invade the whole of the VCSEL area, because the MI threshold lies well
outside the locking range of the front between the pattern and unpatterned
outputs. However, the VCSEL used in these experiments had an unintended
detuning gradient, so that the detuning θ, and thus the MI threshold, had a
roughly linear variation across the active area of the VCSEL. Hence, for fixed
current and input field frequency, MI should be reached first at some point
near the perimeter of the active area. Furthermore, as the front moves away
from that point, the local detuning changes, because of the gradient, and the
front’s motion will slow down. At some point the detuning will correspond
to the upper locking point between patterned and unpatterned outputs, and
the front will stop there, giving a stable state in which part of the VCSEL is
patterned, and part unpatterned, just as observed in Fig. 11. Changing the
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input field changes the location at which the front comes to a halt, and thus
explains the sequence of front locations in Fig. 11. Similar front behavior was
observed when the wavelength, rather than intensity, of the input field was
varied, and corresponding model simulations in the same work confirm this
scenario (Hachair et al., 2004).

Turning now to SDS (in this case specifically cavity solitons), the theoretical
expectation is that they should exist in association with the locking range, and
hence in the unpatterned region adjacent to the front in Fig. 11. Again this is in
rather good accord with experiment: the seminal experiment in Barland et al.
(2002) involved writing and erasing CS in exactly this region (Fig. 2), with
further confirmatory observations and simulations in Hachair et al. (2004).

We remark, however, that the nature of a broad-area VCSEL amplifier some-
what blurs the distinction between MI and the upper locking point. Even in
the absence of material gradients, the VCSEL’s active aperture is inhomoge-
neous due to the fact that one electrode is a ring, to allow efficient injection
and emission of light. As a result, the current injection is transverse to the
active region, leading to “current-crowding”, and thus enhanced gain, on the
perimeter. This is clearly visible in Fig. 11 as a ring of emission around the
boundary. Because of current-crowding, the MI threshold is much lower on
the periphery, and therefore pattern formation inside the VCSEL disc should
occur by invasion from the perimeter, rather than local MI, even in the ab-
sence of a parameter gradient across the disc. Another experimental example
of this “front invasion” can be seen in Richter and Barashenkov (2005), which
shows patterns and SDS in a magnetic fluid.

Not all SDS systems have a “pattern reservoir” at the boundary. In an optically-
pumped VCSEL or amplifier, for example, the gain is typically highest in the
center, and drops off at the boundary. Then patterns should only appear when
the MI threshold is reached, usually centrally. Conversely, any stationary pat-
tern is always surrounded by non-pattern, and thus by a stationary front.
Switch-off of the pattern should thus occur by invasion, not decay. In param-
eter space, this means at the lower locking-point, not the saddle-node.

Turning from fronts to solitons, we already mentioned that SDS can be written
and erased in just the expected area of the current-pumped VCSEL amplifier,
close to the front on the unpatterned side. Similarly, SDS have been cre-
ated (and extinguished) by local perturbations in other optical systems, e.g.
in Schäpers et al. (2002), and elsewhere, e.g. in a ferrofluid by Richter and
Barashenkov (2005). The story does not end there, however, because solitons
sometimes seem to appear spontaneously, i.e. without addressing, on param-
eter variation. Examples from optics, adapted from (Menesguen et al. (2006);
Pedaci et al. (2006)), are illustrated in Figs. 12. This should be forbidden,
according to snaking theory.
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Fig. 12. Inverted contrast images showing sequential appearance of localized states
(intensity spots on a flat background) in an optically-pumped VCSEL amplifier as
the pumping rate is increased, leading eventually to a pattern-like state. Courtesy
of S. Barbay, adapted from Menesguen et al. (2006); Firth et al. (2007a).

Fig. 13. Sequential appearance of localized states with increasing current in an
electrically-pumped VCSEL amplifier. (The input beam phase is structured to trap
SDS on an array, see Sec. 6.) [Reprinted figure with permission from Firth et al.
(2007a). Copyright 2007 of the American Institute of Physics.] Adapted from Pedaci
et al. (2006).

Following on from Menesguen et al. (2006), Barbay et al. (2008) undertook an
experimental investigation of SDS appearance and hysteresis in an optically-
pumped VCSEL amplifier. They used a broad, essentially homogeneous, input
beam but the gain distribution was spatially limited by the size and shape
of the short-wavelength pump beam. By ramping the pump beam power up
and down over an appropriate range, they found spontaneous appearance in
the reflected input beam of localized states with one, then more, main peaks
as the gain was increased. Reducing the gain, peak numbers reduced, with
hysteresis, until the reflection was once more at a low level across the whole
pumped region. They thus sampled snaking bifurcation diagrams for SDS in
this system, in both 2D (circular pump) and quasi-1D (stripe pump) cases.
Both geometries showed evidence of a strongly-tilted snake.

A possible explanation for this tilted-snake discrepancy between theory and
experiment is experimental imperfection. We already saw that, for VCSEL am-
plifiers, front dynamics is strongly affected by unintended gradients in material
properties, and so we should consider possible effects of material gradients and
spatial noise on SDS appearance, disappearance, and dynamics.

We note, first, that some sort of trap is probably necessary for SDS obser-
vation. According to the basic dynamics discussed above, even a very tiny
gradient would sweep the SDS out of the system, probably so fast as to be un-
observable by the slow imaging detectors typically used. So we must suppose
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that the stationary SDS actually observed in VCSELs are probably trapped
at some sort of local imperfection. Indeed it has been demonstrated (Tredicce
(2004); Tanguy et al. (2008b)) that it is possible to move a cavity soliton
away from its location by applying a perturbation in the form of a narrow
laser beam. Turning the beam off results in the CS returning to its original lo-
cation, at least if it has been moved only one or two diameters away. Of course,
given traps which attract solitons, there should also be anti-traps which repel
them. The use of cavity solitons themselves to identify and investigate the
nature of such traps and imperfections is discussed further in Sec. 6.

Can SDS form spontaneously in traps? One could perhaps envisage that MI
threshold is reached locally in the trap, while the surroundings remain below
threshold. However, we already pointed out that locally exceeding the MI
threshold should result in pattern invading the surrounding region, stopping
only at the “locking point”. Rather strong inhomogeneities would be needed
for this expansion to halt when only a single spot has formed, as in Figs. 12
and 13. Recall also that the extended pattern may actually appear through
invasion, rather than MI, placing strong requirements on trap depth, as well
as size, for local MI.

Perhaps more likely is that inhomogeneities can affect front dynamics in such
as way as to generate SDS. As a simple example, consider the decay of an
extended pattern in a current-pumped VCSEL as the drive parameter is re-
duced. The strongest anti-trap present will presumably nucleate the process
by reaching the SN point before other regions. This will give rise to a moving
switching front, invading and destroying neighboring pattern. A deep enough
trap may be able to retain a piece of pattern, i.e. a SDS – like a rock pool left
by the receding tide. Such behavior has been observed at INLN on decreasing
the VCSEL current (Barland, 2008). This scenario is made more plausible
by the fact that the pattern, at the lower end of its existence range, behaves
much more like an array of SDS than a coherent, correlated structure (see
above discussion and (Taranenko et al., 2001)).

More generally, the front marks a region where a pattern is in quasi-equilibrium
with the flat state. It seems plausible that it should be somehow easier to
create a SDS by moving it across the front than by direct creation from the
background. A local gradient transverse to the front could pull a spot from
the pattern, which would then drift away, forming itself into a SDS, eventually
falling into a trap and remaining as a stable isolated SDS.

The optically-pumped VCSEL amplifier case is somewhat different, with a
fairly pronounced gain profile (Barbay et al., 2008), which tends to attract
the SDS to the center of the pump. These authors also find some evidence of
trapping on defects, however. A second key difference is that there can be no
front invasion in this case, so that spontaneous appearance of structure should
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only occur beyond the MI threshold.

In summarizing this subsection, we remark that certain features of the ho-
moclinic snaking scenario, and related but more general features of subcritical
pattern formation, are well observed in broad area VCSELs and other systems.
Inevitably-present material imperfections and fluctuations, however, have im-
portant effects on the detailed behavior of real systems. Some of these are
actually (or potentially) beneficial for the observation and understanding of
SDS phenomena. Some, like the spontaneous appearance of SDS, are not fully
understood, and are indeed harmful from an applications point of view.

2.5 “Tilted” Snaking due to Nonlocal Coupling

From the foregoing it is clear that SDS, and clusters thereof, should exist
only below the MI threshold, and should appear only by localized addressing,
whether in 1D or 2D. Certainly SDS exist as addressable, subcritical struc-
tures in at least some experiments. The spontaneous appearance of SDS-like
objects on parameter variation (as in Fig. 12) is, however, inconsistent with
the bifurcation structure found in 2D models like that of the right panel of
Fig. 8.

We discuss above, and elsewhere in this review, possible explanations based
on material imperfections. While plausible, these are somewhat ad hoc, and
quite strongly system-dependent. In this subsection we analyze a less obvious,
but perhaps a more fundamental explanation, namely that there is some in-
trinsic feature of the experiments not accounted for by the standard models.
Suppose, for example, that the presence of one SDS inhibits the formation of a
second in its neighborhood. There would be no effect on the overall MI thresh-
old, because it assumes a SDS-free system. The development of a pattern in
the neighborhood of a SDS would be inhibited, however, over some effective
range. Then isolated SDS would form, coalescing to form a pattern only if
and when the MI dynamics becomes strong enough to overcome the inhibi-
tion mechanism. Such effects, which could obviously account for at least some
experimental data, are shown below to arise when a long-range (quasi-global)
coupling is added to typical optical models.

As a theoretical basis for the above behavior, we add on the right of the model
equation (3) a nonlocal coupling term G having the following form:

G(x, y, t) = iγ
(

1

S

∫

S
|E(x′, y′, t)|2K(x, y, x′, y′)dx′dy′

)
E(x, y, t) (5)

= iγIaE(x, y, t) (6)

28



1.4 1.5 1.6 1.7 1.8 1.9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.6 1.7 1.8 1.9

0.55

0.60

0.65 I a-
I

 I

periodic pattern

Fig. 14. “Tilted” snaking diagram showing solid and dotted lines denoting respec-
tively stable and unstable multi-peak configurations for the 1D case of global cou-
pling in the saturable absorber model. The inset is an enlargement of the diagram’s
upper part. The maximum number of peaks is linked to the dimension of the spa-
tial box chosen for the numerical simulations. γ = 0.25, other parameters C = 5.4,
θ = −1.0. Compare Fig. 8. [Reprinted figure with permission from Firth et al.
(2007a). Copyright 2007 of the American Institute of Physics.]

where S is the measure of the spatial integration domain and γ is a real
constant coefficient. We suppose in the first instance that the kernel K is a
real constant equal to 1, so the term G is purely imaginary and represents a
global, nonlinear term whose action is to effectively change the cavity detuning
θ. For the case of interest here, θ<0, G further detunes the cavity if γ>0, hence
raising the MI threshold for a given input field EI .

Global coupling is, of course, physically unrealistic, but should provide a good
guide to the effects of a nonlocal coupling with a nontrivial kernel of range
larger than the size of the SDS considered. Should the range be larger than
the effective system size, then the global-coupling approximation should be a
very good one.

Adding such a global coupling, we study the existence, and stability with
respect to spatially modulated perturbations, of stationary solutions to the
previously–mentioned saturable absorber model using a Newton method (Firth
and Harkness, 1998). In Fig. 14, we report the results obtained in 1D for
γ = 0.25, θ = −1.0, C = 5.4 together with the SDS existence branches, both
stable and unstable. We plot the difference Ia−I against I, assuming that the
contribution to G arising from I is incorporated into θ. Analogously to Figs. 8
and 10, localized structures still form two intertwined snakes, bifurcating from
the point of modulational instability (IMI = 1.66 for parameters in Fig. 14)
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Fig. 15. (Color online) Time plots showing the sequential switching of localized
structures when the input field (parametrized by I) from is ramped linearly with
time from I = 1.547 to I = 1.713 (left to right). We start from a single-SDS initial
condition. The gray-scale used goes from dark to light for increasing intensity values
(in color from red via blue, yellow to white). Parameters: θ = −1.0, C = 5.4 and
γ = 0.25. [Reprinted figure with permission from Firth et al. (2007a). Copyright
2007 of the American Institute of Physics.]

and associated with even or odd numbers of intensity peaks. The global cou-
pling has, however, tilted the snakes so as to overhang the MI threshold. This
means that SDS (or clusters of SDS), rather than a system-filling pattern,
should be the final state of the system just beyond the MI threshold.

We confirm this behavior by numerical integration of the full partial differential
equation with a global coupling term. Adding noise to a stationary stable state
on the homogeneous branch brings the system on to the single-SDS state, then
increasing EI induces a switching sequence which progressively adds one peak
to the previous configuration (see Fig. 15). Following the tilted snake upwards
we reach the roll pattern branch where it ends. As expected on the basis of
the previous considerations, and contrary to what happens for G = 0, the roll
pattern is stable only well beyond the MI point.

The stability of the states in Fig. 14 is, as usual, indicated by full lines for stable
states, dotted for unstable ones. Note that part of some positive-slope branches
are actually unstable. This is an interesting consequence of the introduction of
global coupling. An additional effect of the distortion and tilting of the snakes
is that some of the “ladder” states which link the even and odd snakes are
shifted, so as to terminate on the positive slope branches. These bifurcations
correspond to “odd” or (symmetry breaking) eigenmodes. This odd mode
changes the peak number by one unit only, inducing a lateral spatial shift of
the centroid of the structure, as is evident in the simulation in Fig. 15.

There are a number of physical mechanisms which could give rise to nonlocal-
ity in relevant optical experiments. These include transverse carrier diffusion
(Wright et al., 1985), thermal effects, and energy balances. Thermal inho-
mogeneities arising from the presence of localized states can be expected to
induce long-range effects, and are perhaps the strongest candidate to induce
tilted snaking. In the optically-pumped VCSEL amplifier experiment (Bar-
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bay et al., 2008) the authors point out that creation of SDS will create a
temperature perturbation, over a range determined by the thermal transport
properties of the VCSEL system. It is not yet clear whether the these effects
would be such as to induce the observed tilting. The use by Barbay et al.
(2008) of circular and stripe pumping provides an interesting test, because
there were noticeable differences in the snaking and tilting in the two cases.
Clearly thermal nonlocality would be sensitive to the pumping geometry, and
it will be interesting to see whether it can explain the observations.

Some other candidates have a quasi-global character, such as boundary-induced
constraints. Dawes (2008) have shown independently that systems with a con-
servation law (a global constraint) can show tilted snaking. In the SDS ex-
periment in a magnetic fluid (Richter and Barashenkov, 2005) there is global
constraint, relating to conservation of fluid volume.

In summary, subcritical homoclinic snaking is predicted by a powerful and at-
tractive theory, but experimental evidence is limited and some observations are
in contradiction with the theory. An additional nonlocal, or quasi-global, cou-
pling could resolve some of these contradictions, and tilted snakes have been
found in several implementations of such an approach (Firth et al. (2007b,a);
Dawes (2008)). An alternative “local” explanation has been proposed, based
on “ghosts” of higher-order patterns in an ad hoc model (Bortolozzo et al.,
2008). It deals only with single, separated SDS, not clusters or snaking.

Since a significant part of this review deals with SDS in lasers, prompted by
recent experimental advances, some comment on snaking in SDS laser systems
is required. Perhaps the first thing to say is that the conditions for homoclinic
snaking, in the formal sense (Coullet et al., 2000), do not apply. In Sec. 3
we show an example of a bifurcation diagram for a 1D SDS in a laser model
which begins and ends at the “off” state, with no saddle-node bifurcations
to multi-peaked structures (Paulau et al., 2008). That said, clusters of laser
cavity solitons (LCS) have been found in recent experiments (Radwell et al.
(2008); Genevet et al. (2008)) and have been studied in models of a laser with a
saturable absorber (see, e.g., (Rosanov, 2005) and op. cit.). The latter clusters
seem to be related to fronts between homogeneous solutions (see Sec. 5).

From an applications perspective, snaking is not really relevant – multi-stability
and controllability of SDS are the key requirements. As mentioned in the In-
troduction, independent SDS in a homogeneous system naturally give rise to
a multi-stable snake-like bifurcation diagram. Similarly, inhomogeneities and
interactions will inevitably distort and tilt this generalized snake, reducing
the degree of multi-stability. The focus, therefore, should be diagnosis and
elimination or compensation of these effects, rather than semantics.
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3 Cavity soliton lasers

3.1 Attractive features of a cavity soliton laser and bistable laser schemes

Up until now we concentrated on driven bistable systems, i.e. schemes where
a nonlinear cavity or optical feedback system is driven by an external beam,
the holding beam (HB), of high spatial and temporal coherence. For applica-
tions, it seems to be attractive to remove the necessity of the HB and to draw
all the energy from an inexpensive incoherent source like an electric power
supply or high-power laser diodes of low coherence. This implies going from a
driven system to a laser, i.e. an active device where emission is self-sustained.
Whereas in driven systems SDS are “slaved” because their phase, polarization
and frequency is locked to the one of the HB, such a cavity soliton laser (CSL)
– as any laser – has the freedom to choose its phase because it originates from
a spontaneous symmetry breaking. Assuming that the cavity is sufficiently
isotropic and broadband, polarization and frequency of its output is also un-
determined including the possibility of multi-frequency operation which could
result in irregularly or regularly self-pulsing SDS. In a CSL, actually every sin-
gle SDS within the laser aperture should have the freedom to chose between
all these possibilities. This gives exciting new opportunities for fundamental
studies as well as applications. For example, the relative phase between CS is
expected to affect their dynamics and interaction properties (Rosanov et al.,
2005) and it will be interesting to compare the effects of phase-sensitive in-
teractions of laser cavity solitons with the wealth of phenomena known for
propagating spatial solitons (Stegeman and Segev, 1999). Another intriguing
aspect of interactions between laser SDS is the possibility of frequency and
phase locking known to be generic in laser physics for coupled lasers or differ-
ent modes in the same laser (Jiang and McCall (1992); K. S. Thornburg et al.
(1997)) and, more generally, coupled nonlinear oscillators (Pikovsky et al.,
2001). Since all demonstrated laser SDS exist in a cavity, we will refer to them
as laser cavity solitons (LCS) in the following.

Having argued that a CSL would be interesting one needs to caution that a
simple free-running laser won’t support SDS because the bifurcation at laser
threshold is supercritical (i.e. continuous) and not subcritical. Hence there is
no bistability, a prerequisite for SDS. However, there are several well-known
options to enhance the complexity in a laser in order to allow for a sub-
critical start-up. In the laser with an injected signal (LIS), the laser with
frequency-selective feedback (FSF) and the laser with a saturable absorber
(LSA) SDS were demonstrated already experimentally. We will discuss each
of these schemes in the following subsections.

A ring laser without non-reciprocal elements can show bistability between the
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counter-propagating waves. Pérez-Arjona et al. (2007) and Columbo et al.
(2008) predicted that this can form the basis of LCS and it is intriguing to
imagine localized lasing in different directions, but an experimental implemen-
tation does not seem to be in sight. Equally interesting, but probably far from
a realization, are LCS based on bistability in a two-photon laser (Vilaseca
et al., 2001).

Polarization effects are an additional option to obtain bistability in a laser and
indeed VCSELs are promising candidates because the ideal VCSEL cavity and
the matrix elements for light-matter coupling are polarization degenerate. In
small-area devices (and plane-wave models) bistability due to an interplay
between spin-dynamics and phase-amplitude coupling (Miguel et al. (1995);
Sondermann et al. (2003); Ackemann and Sondermann (2005); Mori et al.
(2006)) is well known under conditions where the intrinsic symmetry is only
weakly broken by uncontrolled fabrication anisotropies. One localized state
in the center of a VCSEL with injection orthogonal to its principal polariza-
tion was reported recently (Hachair et al., 2009). A passive system showing
polarization SDS will be discussed in Sec. 5.

We remark that there is some similarity regarding the phase symmetry be-
tween the laser case and the non-degenerate optical parametric oscillator
(OPO) (Skryabin et al. (2000); Santagiustina et al. (2002); Esteban-Mart́ın
et al. (2006)), whereas in the case of the degenerate type-I OPO only two phase
states are possible. Systems of the latter kind and the resulting front dynamics
are discussed in Sec. 5. At present, there is no experimental confirmation of
SDS in OPOs to our knowledge.

3.2 Cavity solitons in lasers with optical injection

The case of a laser with injection is somewhat in between the one of a driven
system and a “true” free-running CSL because the injection breaks the phase
invariance and frequency, phase and polarization of the SDS core are slaved
to the one of the HB. The mechanism of bistability is similar in the laser and
the driven absorber/amplifier case: Initially the HB is detuned from the cavity
resonance and hence the intra-cavity intensity is low. However, there will be
a threshold at which the driving field can cause a change in carrier density
strong enough to drive it into resonance due to the refractive index change
resulting from phase-amplitude coupling (Henry, 1982). This in turn leads to
an increase in intra-cavity intensity and thus to a feedback effect destabilizing
the low amplitude state. As a result, a high-amplitude state with low carrier
density and high refractive index (in an amplifier) and a low-amplitude state
with high-carrier density and low refractive index can coexist. This mechanism
is usually referred to as dispersive optical bistability (Lugiato, 1984).
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LCS were investigated in a VCSEL biased above threshold with an external
HB by Hachair et al. (2006) and the findings were indeed quite similar to the
amplifier case discussed in the sections before by Barland et al. (2002). How-
ever, the “laser” property manifests itself in one distinct difference, which is
that the background of the LCS might be temporally varying. This is due to
the fact that the lower branch of the bistability cycle does not necessarily cor-
respond to an injection locked state but might be oscillatory due to a beating
between the free-running laser emission and the injected field. These regular
or irregular spatio-temporal oscillations of the background can be observed
directly in the temporal domain in simulations and were confirmed experi-
mentally indirectly by spectral measurements. For details we refer to (Hachair
et al., 2006) and the review (Lugiato et al., 2008).

The modeling of this situation is surprisingly demanding because the stan-
dard adiabatic elimination of the dielectric polarization leading to the class-B
equations given in Sec. 1.3 is no longer valid. After the adiabatic elimination,
the gain and loss curves are flat and hence there is no selection mechanism
for frequency and spatial wave number leading to spurious instabilities in the
laser case ((Oppo et al., 1991; Jakobsen et al., 1992)). Keeping the equation for
the polarization, (Rössler et al. (1998); Hachair et al. (2006)), is numerically
very resource demanding because the resulting equations are stiff, spanning a
time scale of about 104 between the decay rates for the dielectric polarization
and the carriers. The action of a gain-line can be semi-phenomenologically
included in the class-B equations by adding a filter in frequency space (Loiko
and Babushkin, 2001). Reduced equations were derived via advanced adia-
batic elimination schemes (Coullet et al. (1989); Oppo et al. (1991); Lega et al.
(1994)) but were only valid under restrictive limitations. Recently, a great step
forward was achieved by deriving a reduced set of equations with broad appli-
cability and a 400fold increase in computational efficiency compared to a code
incorporating the polarization equation (Oppo et al., 2009). This enabled sys-
tematic numerical investigations of the properties of LCS with injection and
is expected to be fruitful for investigating and understanding spatio-temporal
laser dynamics in general.

3.3 Cavity solitons based on frequency-selective feedback

3.3.1 Scheme and mechanism of bistability

Figure 16a shows a scheme, which is suitable for obtaining LCS via frequency-
selective feedback. A broad-area laser with a plano-planar cavity (in the real-
ization discussed below a VCSEL) is coupled to a self-imaging external cavity,
i.e. a cavity containing a telescope with two lenses adjusted to infinity. The
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Fig. 16. (Color online) Scheme of a VCSEL with frequency-selective feedback by a
diffraction grating in a self-imaging cavity and schemes of ray trajectories in the
external cavity. The scheme in Tanguy et al. (2008a,b) used a 62 cm long cavity
with a telescope magnification of 38. a) The path of a ray at the Littrow wavelength
closes into itself independent from its propagation angle with respect to the optical
axis. b) A ray with a wavelength different from the Littrow wavelength propagating
towards the grating along the optical axis (black lines) is coming back at the same
location but at a different angle. The sign of deviation depends on whether it is
blue-detuned (blue lines, dashed) or red-detuned (red lines, solid) with respect to
the Littrow wavelength.

ABCD-transfer matrix of the system is




1 0

0 1


. This configuration can sup-

port arbitrary field distributions; any ray originating from somewhere within
the laser aperture at some emission angle returns to exactly the same posi-
tion with the same angle after one round-trip. Hence there is no diffraction
in the external cavity and the high Fresnel number of the broad-area laser is
preserved. The cavity is closed by a frequency-selective element. In the first
realization reported (Tanguy et al. (2006, 2008a,b)) it was a diffraction grat-
ing in the so-called Littrow configuration, where the first order of the grating
is reflected back into the VCSEL. Other options are volume Bragg gratings
(Radwell et al. (2008); Ackemann et al. (2009)) or Fabry-Perot cavities and
etalons (Fischer et al., 2000b).

There is one frequency, referred to as the grating frequency in the following,
where an on-axis ray is exactly retro-reflected into itself. After one round-
trip through the self-imaging cavity, this is also true for rays at arbitrary
angles (see Fig. 16a), i.e. the grating behaves like a normal plane mirror.
The frequency selectivity of the Littrow scheme stems from that fact that a
ray with a wavelength detuned from the Littrow condition will return to the
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VCSEL at a different angle than the one it originated from (Fig. 16b), though
still to the same position. Fig. 16b shows an on-axis wave as an example but
the same change in angle occurs for any off-axis wave. Hence, the returning
ray is not matching the resonance condition of the VCSEL any more and is
rejected (see (Schulz-Ruhtenberg et al. (2009)) for a detailed discussion).

The mechanism of bistability is a kind of dispersive bistability (as discussed
above) due to the competition between two preferred frequencies in the sys-
tem, the longitudinal resonance of the VCSEL cavity and the grating (or any
other filter) frequency. Initially they are not aligned, the emission amplitude
is low and the carrier density high. For the same parameter, there might be a
state, in which the emission amplitude is high and the carrier density low as a
consequence. Due to phase-amplitude coupling, the refractive index increases
and hence the wavelength of the cavity resonance is red-shifted (Henry, 1982).
This closes a feedback loop and the two resonances are roughly aligned in
the upper state of the bistability loop. A detailed treatment of this effect for
small-area VCSEL is given in (Naumenko et al. (2006, 2007)).

3.3.2 Experimental investigations in VCSELs

If the experiment is performed in a broad-area VCSEL, a bistability curve like
the one in Fig. 17 is obtained if the current is ramped slowly up and down
from a starting value well below the free-running laser threshold (Tanguy et al.
(2008a,b)). The grating frequency is chosen to be lower than the VCSEL res-
onance at the start. After some low-amplitude shoulder, there is an abrupt
switching to a high-amplitude emission state, which stays in some range even
if the current is decreased again. Note that – though the scanning variable is
nominally the current – in effect the x-axis in Fig. 17 corresponds to a wave-
length axis due to the increase in resonance wavelength of the VCSEL with
current due to ohmic heating. Hence, the detuning between the two resonances
is decreased until the feedback effect discussed above is triggered. Experimen-
tally, the resulting high-amplitude state is at a slightly higher frequency than
the grating frequency.

Inspection with a CCD-camera shows that not the whole aperture of the
VCSEL (diameter of 200 µm) switches on, but only a small localized spot
with a diameter of about 10 µm FWHM (Fig. 17, right column). The angular
width in far field is about 2.5◦, which is indistinguishable from the diffraction
limit within experimental resolution. The linewidth in single-mode operation is
10 MHz. Hence, these spots represent coherent emission: They are microlasers,
stabilized by solitonic effects, within the larger pumped aperture.

This formation of LCS can take place at several locations in the aperture at
different threshold currents. An example is shown in Fig. 18a, which shows
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Fig. 17. Power versus current for a single laser CS in a VCSEL operating at 980 nm.
In this case the comb filter (explained in the body of the text) was inserted in
order to reduce the optical background of the spot and hence obtain a cleaner
hysteresis. The panels on the right show, from top to bottom: the near-field intensity
distribution around the spot, a transverse intensity profile through the center of the
near-field distribution, the far-field intensity distribution. [Reprinted figure with
permission from Tanguy et al. (2008a). Copyright 2008 of the American Physical
Society.]

three LCS and some extended background states. The shoulder before the
abrupt switch-on in Fig. 17 is also related to the excitation of these states.
They are blue-detuned to the LCS and have a much broader linewidth than
the LCS. They can be disfavored by introducing a suitable mask serving as
a spatial filter at the near field image plane at the grating (Tanguy et al.
(2008a,b)). The LI-curve obtained if the whole aperture of the VCSEL is
monitored is very complex and consists of many interleaved hysteresis loops
of the individual LCS. If the device is biased at a point where at least two
LCS are simultaneously bistable, the experiment depicted in Fig. 18 can be
performed. It demonstrates that an additional LCS can be written by an
external WB (b) and stays if the WB is removed (c). Afterwards a second LCS
is written (d, e) and erased again by applying the WB at a slightly different
position (g, g). Then the first LCS is erased by the same means (h, i). This
experiment demonstrates the crucial property of independence of two spatially
well separated SDS stressed in Sec. 1 giving them solitonic properties. In a
slightly different setup, all 23 = 8 states of three simultaneously bistable LCS
were demonstrated (Ackemann et al., 2009). From a photonics point of view,
this establishes an all-optical manipulation of the emission state of parallel
microlasers with possible applications in all-optical networks.

The switching is robust in the sense that it is “incoherent”, i.e. it does not rely
on a fixed phase relationship between WB and LCS. WB and the emerging
LCS can even have quite different frequencies up to about 50 GHz. Further-
more, it works with a polarization of the WB parallel or orthogonal to the one
of the LCS (which is linearly polarized due to the anisotropy of the diffraction
grating). This hints to the fact that the main effect is mediated by the car-
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Fig. 18. Near-field intensity distributions showing the successive switching on and off
of two LCS with an injected incoherent WB in a VCSEL with a diameter of 200 µm
(brightest spots, indicated by arrows). Dark areas correspond to high intensities. The
WB is derived from a tunable laser source, with wavelength tuned in the vicinity
of the VCSEL cavity resonance. It is focused onto the VCSEL with a 12 µm spot
diameter (FWHM) and a power in the mW range. Two sites where spontaneous
spots could be observed were selected for WB injection, and the VCSEL was biased
within their bistability range. a) Both spots are off, b) injection of WB, c) one
spot is switched on and remains after the WB is blocked, d) injection of WB at
second location, e) second spot remains on, f) WB injected beside second spot, g)
second spot switched off and does not reappear (first spot unaffected), h) injection of
writing beam to switch off first spot, i) both spots remain off. [Reprinted figure with
permission from Tanguy et al. (2008a). Copyright 2008 of the American Physical
Society.]

rier population. Switching was quantitatively studied in Tanguy et al. (2007).
Minimal switching power and pulse duration were observed for a WB with a
frequency about 8 GHz higher than the one of the emerging LCS, which seems
to coincide with the (low-amplitude) longitudinal resonance of the VCSEL.
The minimal pulse duration investigated was limited by the acousto-optical
modulator (AOM) used to generate the pulses to 20 ns, which was sufficiently
long to induce switching. The system settles down to an asymptotic state after
about 40-50 ns.

Though “incoherent” switching was obtained before in driven cavity or feed-
back systems (Maywar et al. (2000); Schäpers et al. (2000, 2002); Taranenko
and Weiss (2001); Pesch et al. (2005); Barbay et al. (2006)), the main route
for control there is the phase of the WB with respect to the HB (and thus
the CS) (Brambilla et al. (1996); Spinelli et al. (1998); Barland et al. (2002);
Hachair et al. (2005)) leading to constructive or destructive interference and
thus controlling locally the amplitude of the intra-cavity field. The insensitiv-
ity of the switching in CSL to phase is probably one of their major advantages
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in applications though it is probably fair to say that many aspects of the
switching process and potentials for optimization are not well understood at
this point (see also Sec. 3.4.2). The results reported by Tanguy et al. (2007)
are obtained by directly aiming the WB at the LCS. It turns out that the
position of the WB with respect to the LCS is actually important, at least for
quasi-cw control pulses. The effect can be seen in Fig. 18, where the location of
the WB was slightly changed in between ignition and erasure. This difference
is related to the symmetry breaking indicated in Fig. 16b. As discussed in
more detail in Sec. 6.4, this asymmetry induces a preferred drift direction and
hence an “upstream-downstream” asymmetry to the vicinity of any “trap” the
LCS is residing in. Ignition of an LCS is possible from an “upstream” position,
whereas “erasure” seems to be a result of a “downstream” perturbation of the
trap by the WB (Tanguy et al. (2008a,b)). These “traps” are the result of
disorder in broad-area photonic devices pinning the position of the LCS and
leading to scatter in the limit points of their hysteresis loops. For example, a
defect line with three LCS is clearly apparent in Fig. 18e in the lower part of
the aperture.

Replacing the diffraction grating by a volume Bragg grating (VBG) as the
frequency-selective element results in a much more compact and robust setup
and a potentially much faster response time (Radwell et al., 2008). Indications
for phase-locking between different LCS and of polarization effects due to the
small polarization anisotropy of that setup were also found and are currently
under systematic investigation (Radwell et al., 2008).
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Fig. 19. Close-up of timetraces of a switch-on transient recorded with a fast
avalanche photodiode located at the position of the stationary LCS. The zero of
the time axis is arbitrary. a) is obtained in the beginning of the transient, b) later
on. [Reprinted figure with permission from Tanguy et al. (2008a). Copyright 2008
of the American Physical Society.]

Finally, we mention that the freedom of a LCS to choose frequency might lead
to the simultaneous operation on multiple-external cavity modes with the pos-
sibility of self-pulsing, especially during transients. Fig. 19 shows the transient
dynamics of a LCS switching on spontaneously. The dynamics vary over the
time before switch-on, beginning with regularly spaced large-amplitude pulses
every round trip time of 4 ns, see Fig. 19a. Gradually, additional pulses appear
in between two main pulses and the modulation depth decreases (Fig. 19b),
until the modulation ceases almost completely at the end of the switch-on tran-
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sient, though it might be still multi-mode. In that regime different longitudi-
nal modes oscillate probably in anti-phase giving an almost constant envelope
(Viktorov and Mandel, 2000). A transition between pulsing and anti-phase
dynamics is a common scenario in transients of semiconductor lasers with
feedback (Vaschenko et al. (1998); Sciamanna et al. (2002)). Alternatively,
the laser can go into single-longitudinal mode operation after the transient.

Recent experiments with a cavity round-trip time shorter than the carrier
lifetime demonstrate sustained self-pulsing (Ackemann et al., 2009), which
opens an interesting path to self-pulsing SDS and possibly 3D-localization by
mode-locking of LCS operating on many external cavity modes.

3.3.3 Theoretical treatment

For the theoretical description of the VCSEL with FSF, Scroggie et al. (2009)
developed a model which describes the coupled cavity dynamics by adding
a suitable feedback term to the standard model for intra-cavity field E and
carrier density N of a VCSEL (Eq. 2), which reads

F (t) = e−iδτf Ĝ(t− τf/2) [−r1F (t− τf ) + t1E(t− τf )] . (7)

Here, δ and τf denote the external cavity detuning and round–trip time, while
r1 and t1 are the (real) amplitude reflection and transmission coefficients of
the VCSEL output mirror. The operator Ĝ describes the frequency–selective
filter and is taken to be

Ĝ(t) [h(t)] =
rg

2β

∫ t

t−2β
eiΩg(t′−t) h(t′) dt′, (8)

describing a sinc-shaped modulation in frequency space. The frequency 1/β
determines the bandwidth of the filter, while Ωg is its central frequency. The
parameter rg is an overall reflection coefficient. It should be noted that the
term r1F in Eq. (7) is not-included in the “standard”-description of semi-
conductor lasers with feedback, which takes only a single round-trip in the
external cavity into account (so-called Lang-Kobayashi approximation, (Lang
and Kobayashi, 1980)). The addition of the reflected feedback field after one
round-trip allows to take into account all round-trips at essentially no extra
computational costs (see also (Giudici et al., 1999)). This allows for a proper
description of the regime of strong feedback used in the experiments. Note
also that though the gain line and the (VCSEL internal) losses are flat, the
external cavity provides frequency-selection and thus suppresses the spurious
instabilities mentioned in Sec. 3.2.

Analytical and numerical analysis shows that there is a current range below the
solitary laser threshold where both the nonlasing state and extended grating-
controlled states are stable. In that range LCS are found with properties quite
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similar to the experimental ones regarding asymptotic behavior as well as
switch-on transients. Their size is about 8-10 µm.

Some insight in how these LCS form can be obtained by looking at single-
frequency solutions, which are given in 1D by E(x, t) = A(x) exp(−iωt). It
turns out that the solution can be cast into a form which involves a cavity part,
Eq. (9a), and a soliton part, Eq. (9b), which need to be fulfilled simultaneously:

[−iω + (1 + iθ)− S(ω)] A = CA (9a)

i∇2A +
σ(J − 1)(1− iα)

1 + |A|2 A = CA. (9b)

Here, S(ω) represents the filter function. Eq. (9a) can be represented by a curve
in the complex C–plane parameterised by ω and is depicted for a particular set
of parameters in Fig. 20a. The different curves represent all possible external
cavity mode where the envelope is due to the sinc-shape of the filter function.

Eq. (9b) represents a nonlinear eigenvalue problem for soliton solutions in
which the complex parameter C corresponds to an effective loss and detuning.
For a given set of parameters we can expect bounded solutions only on a null
set in the complex C–plane, i.e. a curve at most. It is shown as a dashed
line in Fig. 20b. As this curve is followed from left to right, the corresponding
solutions become broader with lower peak amplitude. It eventually terminates,
with infinite width and zero amplitude, on the straight line C = σ(J − 1)(1−
iα), parametrized by current, defining low-amplitude spatially-homogeneous
solutions to Eq. (9b).

Exact SDS solutions to Eq. (9b) are known in 1D, if the saturation denomi-
nator is expanded, and truncated at the first nontrivial term. These solutions
are of chirped-sech form, and have been known in this context for many years
(Paré et al., 1989). Normally, however, either the SDS or the non-lasing back-
ground state are unstable, so these solutions have had limited experimental
relevance. Use of FSF can solve that problem by ensuring that the non-lasing
state has no available resonances with positive gain under conditions where
the soliton curve intersects one or more modal curves, as in Fig. 20a. The
soliton curve for the chirped-sech SDS solutions is simply a straight line. As
can be expected, that line is tangent to the soliton curve of the full model at
its termination, where the amplitude of the SDS becomes small.

Fig. 20 shows that there can be many intersections between the cavity response
and soliton solution curves, and hence many single–frequency soliton solutions.
Indeed LCS with different frequencies were reported by Tanguy et al. (2008a).
Moreoever, it can be seen that changing a system parameter will alter the soli-
ton and cavity response curves, creating (or destroying) laser solitons in pairs
through saddle–node bifurcations (at least one of such a pair is necessarily
unstable). Since Re(C) represents the net cavity loss we expect the system to
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Fig. 20. (a) Effective cavity response (Eq. (9a)) for the coupled–cavity system plot-
ted in the complex C–plane. (b) Blowup of (a) showing the LCS (dashed line) for
a current J = 1.63 and plane–wave threshold (dotted line) solutions of Eq. (9a)
[Reprinted figure with permission from Scroggie et al. (2009). Copyright pending
with American Physical Society.]

favor the soliton which minimizes this quantity. Numerical simulation bears
this out: as new LCS appear on changing a system parameter, the laser has a
tendency to shift operation to the LCS with the smallest losses. The kinks in
the LI-curve of Fig. 17 are a manifestation of that process.

Numerical simulations confirm also that simultaneous operation on several
external cavity modes is possible and results in self-pulsing (Scroggie et al.,
2009). More detailed investigations are necessary but the preliminary results
support the notion that the VCSEL with FSF might be viable approach to
mode-locked LCS and 3D light confinement.

A more detailed study of the bifurcation characteristics of LCS with FSF was
given in Paulau et al. (2008). The model is simplified to a class-A description,
i.e. the carrier equation is eliminated. This provides a proper description of
the stationary solutions though the stability properties might be slightly dif-
ferent. Other simplifications are a Lorentzian filter profile and the adoption
of the Lang-Kobayashi approximation. Fig. 21 shows that the nonlasing solu-
tion becomes unstable versus lasing of extended plane-wave solutions (dashed
curves) between the points A and B. Between B and the threshold of solitary
lasing (at higher currents, not shown) lasing coexists with a stable nonlas-
ing state. From both A and B branches of localized solutions originate which
merge in C. Some parts of the upper branch close to C correspond to stable
LCS, the rest is unstable. The lower subfigure illustrates the statement made
already for the more detailed model above. At the bifurcation points the size
of the LCS diverges. Moving away from A and B they become more localized
(and acquire a higher amplitude). In the stable range they are about 5 µm in
rough agreement with experiments.

Having discussed homoclinic snaking in detail in Sec. 2 it is maybe surprising
that the LCS does not snake: The branch of the 1-LCS solution reconnects
to the homogeneous state on both sides. Obviously there might be islands
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Fig. 21. Dependence of (a) maximum field amplitude, and (b) width of LCS on
pump current. The solid lines denote the CS branches. The stable part is indicated
by a thick line. The dashed (dash-dotted) line corresponds to the homogeneous
external-cavity mode with maximal (minimal) gain. In between the circle and the
cross, the LCS on the upper branch are spontaneously moving with constant speed.
The points A,B,C are explained in the text. (Courtesy of P. V. Paulau, adapted
from Paulau et al. (2008)).

in phase-space representing more complicated solutions and clusters but they
were not explored yet. It is believed that the existence of the phase symmetry
in the laser equations inhibits the “classical” snaking discussed in Sec. 2. In
view of this result it is surprising that the hysteresis loops of single LCS to
clusters observed in the VCSEL with FSF (Radwell et al., 2008) are quite
similar to the ones observed in amplifier systems, which are expected to show
snaking (Barbay et al., 2008). One possible explanation is disorder, possibly
in both cases.

3.4 Laser cavity solitons due to saturable absorption

3.4.1 General theory and early experiments

The dominant mechanism of bistability in a laser with saturable absorber
(LSA) is “absorptive” and not “dispersive”, i.e. an effect on the cavity losses
and not not due to a shift of resonances. The basic bifurcation scenario is
illustrated in Fig. 22. Below threshold the nonlasing state is stable. It loses
stability if the gain compensates for the non-saturable losses (outcoupling,
background absorption) and the losses in the absorber (here at µ ≈ 5.2). If
the laser starts, the intra-cavity field saturates the absorber, absorption drops,
the losses are reduced and the laser switches abruptly to a finite amplitude.
Reducing the pumping the laser can stay on as long as the field is able to
sustain the saturation and the switch-off point is only reached where the gain
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Fig. 22. Local intensity versus pumping parameter in gain section for a LSA. The
characteristics are obtained for a semiconductor nonlinearity but serve to illustrate a
more general phenomenology. Light dotted lines: homogenous state. Solid line: stable
SDS branch. Dashed line: Unstable SDS branch. (Courtesy of F. Prati, adapted from
Prati et al. (2007)).

can’t compensate the non-saturable losses any more (here at µ ≈ 4.25). The
corresponding hysteresis loop of a plane-wave emission state is depicted as
the dotted line in Fig. 22. In broad-area LSA it turns out under quite general
conditions (see below) that the homogenous lasing solution is unstable and
stable LCS develop instead (dots on upper branch).

The field of LCS in LSA was pioneered by a theoretical suggestion of Rosanov’s
group (Fedorov et al. (1991); Rosanov and Fedorov (1992)) and confirmed ex-
perimentally soon afterwards (Bazhenov et al. (1991); Saffman et al. (1994);
Taranenko et al. (1997)). The setups were based on dye gain media and bac-
teriorhodopsin saturable absorber or photorefractive nonlinearities. A review
summarizing much of this nice work on non-semiconductor systems is given
in (Weiss and Larionova, 2005).

Extensive and significant theoretical work on properties and dynamics of LCS
in a LSA was done by Rosanov’s group (Vladimirov et al. (1999); Fedorov
et al. (2000); Rozanov et al. (2004); Rosanov et al. (2005)) and is reviewed in
(Rosanov (2002, 2005)). We don’t go into detail here because some issues are
reappearing in the following subsection on semiconductor devices, in Sec. 6.4
(motion and spontaneous motion) and in Sec. 5 (front dynamics leading to SDS
with different, but discrete width). We mention that LSA are also predicted
to support dark solitons with topological charges, i.e. ring-shaped structures
with zero intensity and a phase singularity (of different orders) in the center.
The core is similar to the “optical vortices” in normal lasers (Coullet et al.
(1989); Staliunas et al. (1997)) but they should be more prevalent in CSL
(especially in higher orders) due the fact that the dark center is stabilized
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by the additional unsaturated losses (Rosanov, 2002). LCS do not need to
be circularly symmetric and very complex interaction and motion behavior is
found (Rosanov (2002); Rosanov et al. (2005)).

Finally, the energy flow in LCS was analyzed giving some insight to the state-
ment in the introduction that SDS are an attractor of the dissipative dynamics
balancing not only diffraction and nonlinearity but also loss and gain. By anal-
ysis of the transverse Poynting vector, Rozanov et al. (2004) have shown that
energy is injected in the wings of the structure and flows inwards towards
the center and outwards towards the background (see also Akhmediev and
Ankiewicz (2005b) for the case of temporal LCS and Oppo et al. (1999) for
OPO SDS).

3.4.2 Modeling and design of semiconductor-based devices

Obviously, there is a strong drive to replace the rather bulky and slow schemes
mentioned in the previous subsection by semiconductor amplifiers and ab-
sorbers, ideally in a monolithic microcavity. A model to describe semiconductor-
based LSA was given in (Bache et al. (2005); Prati et al. (2007)). Compared
to our “standard equations”, Eq. (2), the interaction of the field E with the
carriers n in the absorber needs to be added:

Ė =
[
−1 + i∇2

⊥ + (1− iα)N + (1− iβ)
]

E (10a)

Ṅ = γ
[
µ−N(1 + |E|2)−B1N

2
]

(10b)

ṅ = γn

[
−η − n(1 + s|E|2)−B2n

2
]
. (10c)

Here, α and β are the linewidth enhancement factors of the gain and ab-
sorber sections, γ and γn represent the ratio of nonradiative carrier decay in
the different materials to the field decay rate rate. µ represents the pumping
parameter of the gain section and η background absorption in the absorber. s
denotes the saturation parameter or better the relative saturation parameter
between gain and absorption. B1, B2 represent bimolecular recombination due
to spontaneous emission in the quantum wells. These are the only semicon-
ductor specific terms, without them the semiconductor equations map exactly
onto the two-level equations used in (Fedorov et al. (2000); Rosanov (2002)).

It should be noted that these equations do not contain a mechanism for
wave vector, respectively frequency, selection. Any tilted wave with E ∼
exp (i~q⊥ · ~r − i(ω + q2

⊥)t) is a solution and the thresholds are degenerate. Usu-
ally, the solution with q⊥ = 0 is analyzed. As discussed in Sec. 3.2, a more
elaborate elimination procedure for the dielectric polarization is needed to re-
move this degeneracy leading to the appearance of a diffusion term or a forth
order nabla-operator (depending on detuning) in the field equations (Coul-
let et al. (1989); Lega et al. (1994); Fedorov et al. (2000); Rosanov (2002)).
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However, the results on LCS seem to be robust with respect to this degeneracy.

Fig. 22 stems from this semiconductor model (Bache et al. (2005); Prati et al.
(2007)). If a WB is injected at the cavity frequency, LCS switch on and settle
down to a stationary structure in the current range between µ ≈ 4.45 . . . 5.15,
after a transient reminiscent of spiking typical for class-B lasers. For µ . 4.45,
the LCS collapses to the off-state. Beyond µ ≈ 5.15, a filamentation instability
sets in.

One crucial condition for the bistability and hence existence of LCS is s > 1,
i.e. the absorber saturates more easily than the gain medium (Bache et al.,
2005). This can be influenced by quantum and device design as well as a
demagnification between gain and absorber section (in a non-monolithic real-
ization).

The second important condition for the stability of LCS is that γn/γ is small
enough (for B1 = B2 = 0) , i.e. the absorber is slower than the gain medium.
Beyond some limit a Hopf bifurcation is found, which corresponds to self-
Q-switching or passive Q-switching (Fischer et al., 2000a), and prevents the
formation of LCS (Bache et al., 2005). In semiconductor devices, the bimolec-
ular terms imply that the gain medium decays in tendency faster than the
absorber because it operates at higher carrier densities. Prati et al. (2007)
have shown that for typical values of B1, B2, bistability can exist already for
s = 1 and γ = γn. This is an important result because it indicates that one
can use the same material as absorber and gain medium.

Switch-on and switch-off of LCS were studied in detail in Mahmoud Aghdami
et al. (2008). The authors studied incoherent injection which only enters the
carrier equation via a local perturbation in µ (for example by optical pumping
in high energy carrier states) and semi-coherent injection at the cavity and
the LSA frequency entering the field equation in the way discussed before in
Eq. (2). In all cases there was no fixed phase relationship between LCS and
WB and the dynamics was mediated by the carriers. Hence typical response
times are on the order of one nanosecond. The type of switching (on or off) can
be controlled by choosing suitable values for pulse duration and amplitude.

A monolithic integration of gain medium and absorber is known for edge-
emitters (Kawaguchi, 1994) and in a lesser extent for small-area VCSELs
(Fischer et al., 2000a). The even more demanding task for broad-area devices
was addressed in Barbay et al. (2005) by using optical pumping and employing
special aperiodic designs of the Bragg reflectors and a suitable positioning of
the quantum well within the standing wave field patterns to ensure that the
absorber is only weakly pumped but still interacts with the lasing field. Based
on such a design recently a bistable localized spot was obtained in device
center (Elsass et al., 2008). These nice results indicate that the design is on
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a good track, though the independent manipulation of two structures is still
outstanding.

A very intriguing twist to the theme of a monolithic CSL with SA comes from
a scheme with mixes propagational solitons and SDS: It unfolds the repeated
encounter of gain and saturable absorption back into a propagational sequence
of gain and absorber in an edge-emitting semiconductor structure (i.e. going
back the path from Fig. 1a to Fig. 1b we took in Sec. 1 to introduce cavity
solitons). The properties of these 1D SDS and their interesting, phase-sensitive
interaction behavior was investigated in a sequence of papers (Ultanir et al.
(2003, 2004, 2006)) and is reviewed in Ultanir et al. (2005).

3.4.3 Experimental realization using face-to-face VCSELs

Another possibility to combine an absorber with a gain medium is to couple
them via an external cavity. This approach was used before to achieve mode-
locking in vertical-cavity devices (Jasim et al., 2004). In Genevet et al. (2008)
a cavity with two intra-cavity telescopes is used to image the active zones
of two broad-area VCSELs onto each other with a magnification of 1. The
resulting LI-curve is depicted in the left part of Fig. 23, where the current in
the gain device is ramped up and down. For low current (region A), the laser
is below threshold. In region B it lases due to feedback from the output facet
of the passive VCSEL. The spatial patterns are complex and typically not
stationary. Then the two lasers start to interact and the intensity drops due
to the onset of absorption in the passive device (region C, note that changing
the current also changes the detuning conditions due to Joule heating). At
the end of the region, the intensity switches abruptly to a high value. This
transition is hysteretic. In the near field localized bright spots form in the gain
as well as in the absorber section (images on the right of Fig. 23). They can
be switched on and off independently, confirming their solitonic nature.

This provides a nice second demonstration of a semiconductor-based CSL.
Currently, properties and dynamics of the LCS are analyzed in detail. Obvi-
ously, the scheme is not simply described by Eqs. (10a-10b), but characterized
by a quite complex coupled cavity situation, which needs to be captured in
a refined treatment. In regime B, a feedback equation similar to Eq. (7) rep-
resents a starting point for an analysis. In regime C, the nonlinearity of the
reflection from the passive device needs to be incorporated in addition.
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Fig. 23. Left panel: Local intensity output emitted by the system when the current
IL1 is scanned in the gain device for all the other parameters constant. A) below
threshold, B) lasing by feedback, C) absorption by L2, bistable behavior, D) pat-
tern formation. Right panel: Examples of near field intensity distributions in both
devices in region C showing LCS (upper one gain device; lower one absorber). L2 is
slightly shifted on the left. Dark areas correspond to high intensities. (Courtesy of
P. Genevet, adapted from Genevet et al. (2008))

4 Spatial Dissipative Solitons due to Periodic Modulations

The effect of background modulations in the nonlinear dynamics of broad–
area photonic devices leads to control and stabilization of spatial structures
(Neubecker and Zimmermann (2002); Martin et al. (1996)). When describ-
ing the appearance of SDS in the presence of periodic modulations, two main
approaches have been followed. On one side, continuous variables and modula-
tions have been considered in models of intra-cavity photonic crystals (ICPC)
while on the other discrete models have been used in the so called tight-binding
limit. We provide first a review of SDS in photonic devices with ICPC with
continuous variables and then those found in devices formed by separate, yet
coupled, discrete elements.

4.1 Spatial Dissipative Solitons due to intra-cavity photonic crystals

Intra-cavity photonic crystals are described as periodic modulations of the
material’s refractive index. For appropriate values of the cavity detuning, the
linear band-gap of the photonic crystal inhibits modulational instabilities that
lead to the formation of periodic spatial structures (patterns) (Gomila et al.
(2004); Gomila and Oppo (2005)). This phenomenon has been recently realized
experimentally by Terhalle et al. (2008). These references are restricted to the
case of supercritical bifurcations only. The effects of a periodic modulation of
the refractive index on the formation of subcritical structures was studied by
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Gomila and Oppo (2007). This case is especially relevant for the observation
of stationary SDS.

The model considered is that of an optical cavity containing a self-focusing
Kerr medium (Lugiato and Lefever (1987); Scroggie et al. (1994)) (see Eq. (1))
and a linear medium with a spatially modulated refractive index:

∂tE = −[1 + i(θ + f(x))]E + i∂2
xE + EI + i|E|2E, (11)

where θ is the average detuning between the frequency of the pump and the
frequency of the cavity, f(x) accounts for the modulated refractive index in
the transverse direction of the photonic crystal, and EI is the input field.
f(x) is a square function of amplitude α and wavenumber kpc. This model
is convenient for its simplicity but SDS induced by ICPC are expected in a
variety of photonic devices such as saturable absorbers, optical parametric
oscillators and lasers. In the absence of a photonic crystal (α = 0) Eq. (11)
has a homogeneous steady state solution implicitly given by

E0 =
EI

1 + i(θ − I)
, (12)

where I = |E0|2. Eq. (12) has a single-valued solution for θ <
√

3 (see Sec. 2.4).
The homogeneous solution is stable for I < 1 and becomes modulationally
unstable at I = 1 with critical wavenumber kc =

√
2− θ, leading to the

formation of a stripe pattern.

Periodic modulation of the refractive index can inhibit the formation of pat-
terns with kc ∼ kpc/2 = 2, i.e. for values of the detuning around θ = −2
(Gomila et al., 2004). In that case, the response of the system to the ICPC is
very small, accordingly to the large and negative decay rate of perturbations
at k = kpc (see Fig. 24a). Here, instead, we are interested in regimes where
SDS exist. SDS are found above θ = 41/30, where the critical wavenumber is
small and the wavenumber kpc = 2kc is only weakly damped (see Fig. 24b). In
this case the system presents a strong response to the perturbation introduced
by the spatial periodic modulation. A strong response to the ICPC enhances
the amplitude of the fundamental solution, and induces a reverse subcritical
bifurcation and patterns at large values of the input intensity. By increasing
the amplitude of the spatial modulations the reverse subcritical bifurcation
and associated patterns progressively move down to lower values of I until
they collide with the upward directed instability of the fundamental solution
(see Fig. 25).

When increasing the amplitude of the ICPC modulation α we observe a pro-
gressive stabilization of the fundamental solution at large values of I (see
Fig. 25). The fundamental solution becomes stable through a locking with
the periodic forcing introduced by the ICPC, similar to the case studied by
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Fig. 24. Marginal stability curve of the homogeneous solution without photonic
crystal (α = 0) for a) θ = −2 and b) θ = 1.5. The horizontal dashed line shows
the threshold for pattern formation. Here Is = I is the stationary intensity of
the homogeneous solution. The two vertical dotted lines indicate the critical kc

and photonic crystal kpc wavenumbers. The vertical distance from the marginal
stability curve to the threshold line is an indication of the stability of perturbations
corresponding to that wavenumber. [Reprinted figure with permission from Gomila
and Oppo (2007). Copyright 2007 by the American Physical Society.]

Fig. 25. Bifurcation structure of a pattern at the critical wavenumber in absence
(a) and presence of a intracavity photonic crystal of amplitudes (b) 0.2 and (c) 0.4,
for θ = 1.5. Solid (dashed) lines correspond to stable (unstable) solutions. Here
Is = I = |E0|2 is the stationary intensity of the fundamental solution.

Neubecker and Zimmermann (2002). In our case, however, the modulation is in
the refractive index instead of in the input pump. Eventually, the fundamental
solution becomes stable for all values of the pump except those between two
bifurcation points that lead to the pattern with k = kc (see Fig. 25(b) and (c)).
Both bifurcations are subcritical and the fundamental solution stably coexists
with the pattern in two different regions of the parameter space. Remarkably,
the new region of coexistence between the fundamental and the pattern so-
lution close to the reverse (second) subcritical bifurcation is much larger in
parameter space than the first one. For instance, in the system without pho-
tonic crystal and for θ = 1.5, pattern and homogeneous solution coexist and
are stable for 0.938 < I < 1.0 while with a gentle periodic modulation (such
as with α = 0.2) this region shifts to 0.6936 < I < 0.72 and a completely new
and broader region appears for 0.891 < I < 1.006. We note that the size of
the new subcritical region is 0.115 as compared with 0.062 in the case without
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Fig. 26. Intensity profiles of the coexisting a) fundamental and b) pattern solutions
for I = 0.96 and θ = 1.5 in presence of a periodic modulation of amplitude α = 0.2.
[Reprinted figure with permission from Gomila and Oppo (2007). Copyright 2007
by the American Physical Society.]

photonic crystal. This is roughly an 85% increment, greatly enhancing the
possibility to realize experimentally SDS in a novel regime of bistability due
to the ICPC.

In the bistability region between fundamental and pattern solutions close to
the reverse subcritical bifurcation, SDS are found. For example for α = 0.2
and θ = 1.5, fundamental, pattern and SDS solutions are found in the range
0.891 < I < 1.006. Fig. 26 shows the intensity profiles of the fundamental and
pattern solutions.

The fundamental solution is (trivially) modulated at the same periodicity
λpc = 2π/kpc of the ICPC, while the pattern has a wavelength equal to 2λpc

and consists of high peaks on top of a lower modulation at kpc. The coexistence
of a fundamental and a pattern solution often leads to the existence of localized
solutions (the SDS) that consist of an oscillation of the pattern embedded in
the fundamental solution. Fig. 27a shows the profile of a single and double peak
SDS generated by seeding peaks of the pattern on the fundamental solution.
In order to recover more familiar shapes of SDS, Fig. 27b displays the intensity
of the difference between the SDS and the fundamental solution EFS.

As for SDS in photonic systems with no background modulations, a family of
(multi-peaked) localized states is found. The fundamental solution, however,
is now periodically modulated in space so that the spatial reversibility typical
of snaking (Woods and Champneys (1999); Coullet et al. (2000, 2004); McSloy
et al. (2002); Burke and Knobloch (2006)) takes place only at some discrete
positions. Steady state equations of systems with ICPC contain spatial pe-
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Fig. 27. Left side: a) Intensity of a single peak localized structure (SDS) and b)
the intensity difference between the SDS and the fundamental solution in the new
subcritical regime for large values of I. Here I = 0.96, θ = 1.5 and α = 0.2. Right
side: The same but for a two-peaks SDS. [Reprinted figure with permission from
Gomila and Oppo (2007). Copyright 2007 by the American Physical Scoiety.]

riodic forcing and are then non-autonoumous. A general theory of snaking
describing these situations is still missing but there are strong analogies with
standard snaking as described in Sec. 2. For example, the left and right sides of
Fig. 28 show snaking-like diagrams of the single and two peak SDS with ICPC,
respectively. Note that the single peak SDS does not connect directly with the
three peak SDS as commonly observed in homogeneous systems (see left side
of Fig. 28). In the ICPC case the line of single peak solutions (1) folds back
first through a three unstable peak SDS (3u) and then through a two peak
structure with a missing peak (hole) at its center (2a), i.e. a 2-homoclinic orbit.
In homogeneous systems N-homoclinic orbits appear in separated bifurcation
lines, while in the ICPC system they merge with the fundamental snaking of
1-homoclinic orbits. Similarly, on the right side of Fig. 28 the snaking of the
two peak SDS entangles with a 2-homoclinic orbit consisting of two peaks with
two holes in the middle (2b). Solutions with separated SDS peaks like (2a) and
(2b) of Fig. 28 would have weak stability in systems with homogeneous funda-
mental solutions since the latter have spatial invariance. (2a) and (2b) acquire
robustess in the presence of a spatially modulated fundamental solution like
the ICPC system discussed here. The unusual properties and robustness of
these and other SDS in photonic systems with ICPC require further general-
izations of the snaking theory (see for example Woods and Champneys (1999);
Coullet et al. (2000, 2004); Burke and Knobloch (2006)) and are the focus of
present research efforts. We note that localized states between two periodic
solutions, although of a different nature than the ones investigated here, have
also been studied by Bortolozzo et al. (2006).

52



3

2a

1
3u

3

2a

3u

4

22b

4u

4

2b

4u

Fig. 28. Left side: (a) Snaking-like diagram of a single peak localized structure.
Solid (dashed) lines indicate stable (unstable) SDS solutions. The lower panels show
the transverse profile of the structures corresponding to lines labeled 3, 2a and 3u
respectively. The localized structure corresponding to line 1 is the single peak SDS
shown on the left side of figure 27. Right side: The same but for the two peaks
SDS. In this case, line 2 corresponds to the right side of figure 27. [Reprinted figure
with permission from Gomila and Oppo (2007). Copyright 2007 of the American
Physical Society.]

SDS in photonic systems with ICPC may be of difficult detection in the near
field intensity because of the limited excursion difference between the funda-
mental and pattern solutions. An easier way to detect the presence of a SDS in
the modulated output of an ICPC device is to construct its far field (Fourier
transform) distribution in the focal plane of a converging lens (Gomila and
Oppo, 2007).
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Present results of ICPC induced SDS (see (Gomila and Oppo, 2007)) have
been obtained in a prototypical model for optical pattern formation but their
validity should extend to other photonic devices more relevant for practi-
cal applications such as models for semiconductor absorbers and lasers with
feedback. Recent generalizations of ICPC induced SDS have also considered
modulations in the longitudinal direction (Staliunas et al., 2008). Finally, re-
markable control of the conservative counterparts of SDS in photonic lattices
has been recently demonstrated in photorefractive crystals (Fischer et al.,
2006)

SDS, snaking, and subcritical bifurcations induced by periodic modulations
of parameters are universal features in the study of complex systems and
should also be observable in a variety of scientific disciplines outside optics
and photonics.

4.2 Discrete Spatial Dissipative Solitons

The most studied discrete model in photonics is the discrete nonlinear Schrödinger
(DNLS) equation that describes arrays of optical waveguides. Localized solu-
tions of the DNLS (often referred to as discrete solitons (Christodoulides and
Joseph, 1988)) correspond to self-trapped states, have been known for some
time (Eilbeck and Johansson, 2003) and have been observed experimentally
in semiconductor waveguides (Eisenberg et al., 1998).

The introduction of dissipation in optical DNLS is due to Peschel et al. (2004)
who derived a model of spatially coupled cavities obtained by placing mirrors
at the open ends of the waveguides (see left panel of Fig. 29) .

The model that they have obtained is given by:

(
idt + ∆ + i + α|An|2

)
An + C (An+1 + An−1) = Ain (13)

where An is the normalized complex amplitude of the field in the n-th waveg-
uide, ∆ is the detuning from the cavity resonance, α = ±1 describes a focusing
or defocusing nonlinearity, C is the spatial coupling parameter, and Ain the
driving field. The main difference from the DNLS is the presence of losses due
to the partially transmitting mirrors (see the third term in Eq. (13)). Eq. (13)
can also be seen as a discretized version of the model by Lugiato and Lefever
(1987) and the discrete counterpart of Eq. (11).

The stationary response of a single cavity to the driving field displays bistablity
over certain ranges of the input power (see the grey curve in the right panel
of Fig. 29). Numerical schemes for the determination and stability of spatial
solutions (Firth and Harkness (1998); Harkness et al. (2002); McSloy et al.
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Fig. 29. Left side: Coupled cavities formed by a waveguide array with mirrors
on each end facets. Right side: Stability range of discrete SDS for the defocusing
case. Homogeneous solution (grey curve, solid for stable, dashed for unstable, dotted
for modulationally unstable), peak power of discrete SDS (black curve, solid for
stable and dashed for unstable). The insets show discrete SDS of different orders.
Parameters are α = −1, ∆ = 2.5 and C = 0.25. [Reprinted figures with permission
from Peschel et al. (2004). Copyright 2004 by the Optical Society of America. ]

(2002)) can be used to find discrete SDS at generic values of the coupling
C and within the single cavity bistability (see the right panel of Fig. 29). In
particular, families of bright discrete SDS of increasing width, dark discrete
SDS and even oscillating discrete SDS can be found and tracked in parameter
space (Peschel et al., 2004).

Recent work has extended discrete SDS to quadratic nonlinearities (Egorov
et al. (2005a); Egorov and Lederer (2008)) and tilted input beams (Egorov
et al. (2005b, 2008)). Finally, it is intriguing to note that localized dissipations
in the DNLS equation lead to the formation of self-trapped states with strong
similarities to the conservative discrete solitons (Livi et al., 2006).

5 Phase Fronts and Locked Spots

In this section, we present a diffractive effect on phase fronts that leads to
the formation of SDS in the shape of localized spots due to their locking in
space. The presence of spatial oscillations in the front’s tails is a prerequisite
for locked spots that belongs to the broader universal class of SDS. We will
show that diffraction is the mechanism responsible for such oscillations thus
making locked spots a universal feature in broad-area nonlinear optics and
photonic devices.

Stationary and moving fronts separating two different phases have been at the
centre of research in spatio-temporal structures of non-equilibrium systems for
a long time (Gunton et al. (1983); Bray (1994)). In systems with non-conserved
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order parameters (such as chemical reactions, anti-ferromagnets and optical
absorbers), phase separation coarsens with a t1/2 power law (Allen and Cahn,
1979) and has been studied via Monte-Carlo simulations (Gunton et al., 1983),
coupled map systems (Kapral and Oppo (1986); Oppo and Kapral (1987)),
and the integration of partial differential equations (Bray, 1994).

In photonics, locking of moving fronts (labelled as ”switching waves”) have
been introduced by Rosanov and collaborators (Rosanov and Khodova (1990);
Rosanov (1991); Fedorov et al. (1991); Rosanov (1996, 2002)) in a saturable
absorber system described by:

∂tE = i
v

2k
∇2E − vαE

2(1 + |E|2/Is)
− v(1−Rei∆)

L
E + Ei (14)

where E is the intracavity field, v the group velocity, k the wavenumber, α
the linear absorption coefficient, Is the saturation intensity, ∆ the detuning,
L the cavity length and Ei the input amplitude. A simple renormalization of
time, space and field variables leads to the mean field model of a saturable
absorber (Lugiato and Oldano (1988); Firth and Scroggie (1996))

∂τE = −(1 + iθ)E − 2C

1 + |E|2 E + EI + i∇2E (15)

where C = αL/4(1−R) is the cooperative parameter. Eq. (15) is nothing but
Eq. (3) with α = 0 and 2C = −µ, and has been presented in Sec. 2.1 to dis-
cuss the snaking of SDS with (or close to) bistability between a homogeneous
and a pattern state for θ different from zero (Firth and Scroggie (1996); Hark-
ness et al. (2002); McSloy et al. (2002)). At resonance (θ = 0), a bistability
between two homogeneous states corresponding to high and low absorption
respectively, can be found. Fig. 30(a) and (b) (Fig. 30(c) and (d)) show the
1D evolution of the amplitude |E| of Eq. (15) for an initial domain of the low
(high) absorption state on a high (low) absorption background, for C = 10
and |EI |2 = 0.33 (|EI |2 = 0.35). In both cases we observe a rapid formation of
traveling fronts between the two stationary states. Since the fronts are sharp
spatial structures, diffraction produces spatial oscillations in the approaching
of the homogeneous states. The temporal evolution of these domains does not
end in a coalescence of fronts which is typical of purely diffusing systems but
in the formation of SDS. In particular Fig. 30(b) (Fig. 30(d)) shows a stable
peak (trough) on the high (low) absorption background.

From the dynamical point of view, the presence of the fronts’ oscillatory tails
is a non-trivial spatial feature since it is through their interaction that an en-
tire family of SDS is generated (Coullet et al. (1987); Coullet (2002); Rosanov
and Khodova (1990); Rosanov (1996, 2002); Oppo et al. (1999, 2001)). The in-
teraction force between two fronts with oscillatory tails is spatially modulated
with attractive (repulsive) locations where its minima (maxima) are located
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Fig. 30. Panels (a) and (b): Dynamical evolution of the field amplitude |E| of
a 1D domain of low absorption on a high absorpiton background for the nonlinear
absorber equation (15). Parameters are C = 10 and |EI |2 = 0.33. Panel (b) shows
the final asymptotic state. Panels (c) and (d): Dynamical evolution of the field
amplitude |E| of a 1D domain of high absorption on a low absopriton background
for the nonlinear absorber equation (15). Parameters are C = 10 and |EI |2 = 0.35.
Panel (d) shows the final asymptotic state.

(Coullet et al. (1987); Coullet (2002)). The depth (height) of these minima
(maxima) increases the shorter the distance between the fronts.

The dynamics of 2D fronts differ from that in 1D in that curvature effects
become important. In order to understand better 2D front dynamics in pho-
tonics and to compare it with phase separation in other fields of science, it is
essential to maintain full equivalence (in energetic terms) of the two phases
in order to avoid nucleation phenomena. For the saturable absorber case of
Eq. (15) this is achieved only for a single value of the external amplitude
EI corresponding to the Maxwell construction of the bistable regime. There
are however three examples of photonic devices where the equivalence of the
bistable states is maintained by symmetry and not by the (single value) choice
of a control parametrer. These are the Degenerate Optical Parameric Oscilla-
tor (DOPO), the Vectorial Kerr Cavity (VKC) and the model for a Sodium
Cell with Feedback Mirror and λ/8 plate (SCFM). We review here the main
features of fronts and locked SDS in these models with a specfic aim of their
2D experimental realization in the SCFM system.

We start with the DOPO model of Oppo et al. (1994) at resonance where
fronts and locked spots are easier to discuss:

∂τA0 = Γ
(
−A0 + EI − A2

1

)
+ i∇2A0 (16)

∂τA1 =−A1 + A0A
∗
1 + 2i∇2A1 .

These equations describe a pump field A0 that generates a signal field A1 at
half its frequency via parametric down conversion in a Type-I crystal inside
an optical cavity. In Eqs. (16) Γ is the ratio between the cavity decay rates at
the pump and signal frequencies and EI is the (real) amplitude of the input
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pump. Eqs. (16) admit three spatially homogenous solutions:

As
0 = EI − (As

1)
2 As

1 = 0, ±
√

EI − 1 (17)

with the zero solution being stable for EI < 1 and unstable otherwise, while
the two-phase solution exists and is stable for EI > 1. The two-phase solutions
are mirror images of each other, differ by a phase π and have the same intensity
|As

1|2. For large values of Γ, Eqs. (16) reduce to a single parametrically driven
Ginzburg-Landau equation for the signal field (Oppo et al., 2001) that admits
two stationary (Ising) front solutions

Af
1 = ±

√
EI − 1 tanh

(√
(EI − 1)/2 x

)
(18)

where x is a generic direction in the 2D transverse plane. Such fronts con-
nect the two homogeneous phase solutions and correspond to straight lines of
darkenss since the signal intensity is zero at the core of the front (Trillo et al.,
1997). For generic values of Γ, Eqs. (16) are non-variational and an explicit
form of the front solution is not available. Accurate numerical methods for
the determination of stationary (and travelling) spatial solutions have how-
ever found stable fronts of more complicated shape than a simple hyperbolic
tangent, over a wide range of values EI > 1 for, for example, Γ = 1 in Eqs.
(16) (Oppo et al., 2001). Decreasing values of Γ from, say, 100 to 1, make
the fronts steeper and steeper in space. Narrow optical features diffract and
develop oscillatory tails typical of Airy functions. In Fig. 31 oscillatory tails
of two (interacting) fronts are clearly visible. Fig. 31 shows six locked SDS for
the DOPO system with EI = 2 (Oppo et al., 2001). All these solutions are
stationary, stable and coexist with their counterparts obtained by reflection
around the horizontal x axis (top-bottom exchange).

In 2D the solutions of Fig. 31 correspond to parallel stripes of alternating
phases separated by fronts with ”locked” tails. We will refer to them as ”locked
fronts” although, to be precise, the solutions of Fig. 31 are not exactly locked
Ising fronts since the ”topological” constrain of zero real and imaginary parts
at the core of the front has been removed, the shift from zero being the smaller
the broader the spatial soliton is. In 2D it is also natural to consider the evolu-
tion of one phase surrounded by the other and the phenomenon of phase sepa-
ration where domains of the two phases are dynamically equivalent. Since the
order parameter is not conserved, we are in the presence of phase separation
and not of spinodal decomposition. This has importance when determining
the appropriate growth law for the dynamics of the phase domains. In phase
separation dynamics, the final state can be homogeneous in one of the two
phases or formed by linear stripes of alternating phases.

Fig. 32(a) and (b) show the long term evolution in 2D of the real part and
intensity of the signal field of Eqs. (16) for Γ = 1 and EI = 1.5. Domains of
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Fig. 31. Stable SDS formed by locked fronts’ tails in the DOPO for Γ = 1 and
EI = 2. [Reprinted figure with permission from Oppo et al. (2001). Copyright 2001
by the American Physical Society.]

Fig. 32. Snapshot of the 2D evolution of the real part ((a) and (c)) and intensity
((b) and (d)) of A1 for Γ = 1 and EI = 1.5 ((a) and (b)) and EI = 2.4 ((c) and
(d)).

one phase embedded in the other are clearly visible while the dark lines in the
intensity plots correspond to the core of fronts where the signal intensity is
close to zero.

It is possible to demonstrate that the dynamics of the phase domains of the
DOPO follows the t1/2 power law of the Allen and Cahn (1979) coarsening
by evaluating the structure factor, i.e. the Fourier transform of the two-point
correlation function of the front dynamics. The scaling of the structure factor
with t1/2 was verified for DOPO fronts by Le Berre et al. (2000); Oppo et al.
(2001). We note however that other coarsening laws different from t1/2 and
observed in some numerical experiments (Le Berre et al. (2000); Tlidi et al.
(2000)) are due to boundary and finite size effects. The t1/2 Allen-Cahn coars-
ening law demonstrates that the motion of the fronts in 2D is due to local
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curvature, the dynamics of a circular front of radius R being ruled by:

dtR(t) = − γ

R
. (19)

The long-term dynamics of DOPO fronts is however modified when the input
pump amplitude EI exceeds a critical value (equal to 2.21 in our simulations).
Stable locked fronts of circular shape appear (see Figs. 32(c) and (d)) (Oppo
et al. (1999, 2001)) and interrupt the coalescence of closed domains. The theory
of locked fronts developed in 1D by Coullet et al. (1987); Coullet (2002) can
in fact be generalised to the radial variable (Vladimirov et al., 2002). Stable
circular SDS or ”locked spots” due to the locking of a front’s tail with itself
have been observed in numerical simulations of several 2D optical systems
(Rosanov and Khodova (1990); Rosanov (1996); Ouchi and Fujisaka (1996);
Staliunas and Sánchez-Morcillo (1997); Oppo et al. (1999); Sánchez-Morcillo
and Staliunas (1999); Oppo et al. (2001)). When locked spots exist, domains
of one phase embedded in the other no longer shrink to zero but collapse onto
these SDS solutions. The dark ring of DOPO locked spots is what remains
of the circular Ising domain wall separating the two phases. Since localized
SDS with circular symmetry have a zero eigenvalue (marginal stability) for
translational motion (Firth and Scroggie, 1996), it is possible to move and pin
these structures to maxima (or minima) of appropriate spatial modulations
of the input pump beam (Scroggie et al., 2005). Arrays of circular locked
spots can thus be arranged and manipulated by the operator at will by using
background modulations (Scroggie et al., 2005). This procedure represents a
first step in the control of fronts separating two phases.

A second system where the symmetry between bistable homogeneous states
is maintained is the Vectorial Kerr Resonator (VKR) studied for example by
Geddes et al. (1994); Hoyuelos et al. (1998); Gallego et al. (2000):

∂tE± = −(1 + iθ)E± + i∇2E± + EI − i

4

[
|E±|2 + β|E∓|2

]
E± (20)

where E± are the circularly polarized field components, EI is the pump, θ the
detuning, and β the cross coupling of the susceptibility tensor. Considering
θ = 1 and β = 7 as in Gomila et al. (2003), it is possible to find bistability
between two homogeneous solutions for pump values EI above 1.5. These two
solutions are perfectly equivalent apart from the orientation of the polarization
ellipse. Again, fronts connecting these two solutions exist and have oscillatory
tails. Oscillatory tails can lock in 1D and 2D leading to locked fronts and
SDS of the locked spot kind (Gallego et al. (2000); Gomila et al. (2003)).
The relevance of the VKR model is that it demonstrates that polarization
domains can display the front phenomena described in the DOPO and be
used to characterize phase separation in systems driven by diffraction instead
of diffusion.
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Fig. 33. Schematic experimental setup. λ/8: λ/8 retardation plate, M: mirror of
high reflectivity, LP: linear polarizer, CCD: charge-coupled device camera, AOM:
acousto-optic modulator

Recent experiments performed with a cell of optically pumped sodium vapor in
front of a single feedback mirror (see Fig. 33) have used polarization domains
as equivalent but separate phases (Pesch et al. (2005, 2007)).

Experimental investigations of moving fronts in 2D are rare. In Pesch et al.
(2007) the t1/2 growth law for coarsening dynamics between two equivalent
homogeneous states as well as its modifications due to SDS formation with
locking fronts is observed and investigated in the optical setup of Fig. 33.

The system is formed by a sodium vapor cell injected by a linearly polarized
laser that is reflected by a feedback mirror. A λ/8 retardation plate induces a
coupling between the circularly polarized componenets of the light field. This
system exhibits a bifurcation leading to two homogeneous states of the orien-
tation (Yabuzaki et al. (1984); Große Westhoff et al. (2000)). There is a broad
range of input powers where the two states are coexisting and homogeneous.

The system is initially prepared in a state with negative polarization rota-
tion. Then an addressing beam of circular shape and opposite polarization is
switched on by means of an acousto-optic modulator (AOM). A domain of
one of the bistable unstructured states embedded into a background of the
other state, i.e. a circular front, is thus created. The insets on the left side of
Fig. 34 show some sample frames of the time sequence (Pesch et al., 2007). The
continuous shrinkage of the domain finally leads to its disappearance within a
time period of 4 ms and the initial background state is recovered (see the left
side of Fig. 34).

In agreement with Eq. (19) the dynamics is given by R(t) = [R0
2 − 2γt]1/2

describing a t1/2 law of the Allen and Cahn (1979) type . The experimental
shrinking of circular domains shown on the left side of Fig. 34 is described
very well by curvature-driven dynamics. This is also confirmed by numerical
simulations of a microscopic model of the system with the inclusion of the ac-
tion of the λ/8-plate (Große Westhoff et al. (2000)). Numerical data obtained
from this model agree very well with the experimental measurements (see the
open circles on the left side of Fig. 34).
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Fig. 34. Contraction of a circular domain (radius squared versus time). Left side:
Solid squares denote experimental measurements and open circles results from nu-
merical simulations. Straight lines correspond to a linear fitting. The insets show
the shape of the beam at different times in a grey-scale (‘bright’ denoting high
intensity). Right side: Contraction of a circular domain close to the locking re-
gion. Insets show images of the domain at the plateaus of the contraction curve.
[Reprinted figure with permission from Pesch et al. (2007). Copyright 2007 by the
American Physical Society.]

At higher values of the input power, there is a qualitative change in the dy-
namical behavior of the domains. The right side of Fig. 34 shows the temporal
evolution of a domain at high input powers in an overlay of three sampling
sequences at equal values of the parameters. While the monotonic decrease
of the domain radius persists, the contraction curve shows a large amount of
modulations and two main plateaus. The insets on the right side of Fig. 34
show images of the domains at the radii of the plateaus (Pesch et al., 2007).
These structures display pronounced radial oscillations. With increasing in-
put power, the oscillations become more pronounced. If the input power is
increased again, stable SDS are observed. The states at which the dynamics
nearly stops are interpreted as precursors of the stable SDS due to locking of
the fronts (Pesch et al., 2005).

As a result of the tail interactions a discrete family of SDS of different sizes
(see the insets on the right side of Fig. 34 for a qualitative example of two
SDS of different size) is observed in parameter regions where front velocities
are low and locking is promoted by the appearance of pronounced spatial
oscillations. The regions of existence of SDS obtained from the experiment and
from numerical calculations using a Newton method are presented in the left
and central panels of Fig. 35. In contrast to 1D systems where the curvature-
driven dynamics is absent, the thresholds for the existence of each SDS have
a cusp shape. Above the cusp thresholds, broad regions of SDS existence with
large overlaps are observed. Multistability between SDS of different orders and
sizes is commonplace.

The main features of the locking phenomenon can be captured phenomeno-
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Fig. 35. (Color online) Regions of existence of SDS of different orders and sizes (from
first to fifth order: squares (red), circles (green), up-triangles (magenta), down-tri-
angles (cyan), diamonds (black)). Left Panel: experiment. Central Panel: Newton
method of the modified model of Große Westhoff et al. (2000). Right Panel: ana-
lytic solution of Eq. (21). [Reprinted figure with permission from Pesch et al. (2007).
Copyright 2007 by the American Physical Society.]

logically by a modified equation for the radius dynamics. Coullet et al. (1987)
have shown that the interaction of two fronts separated by a distance d and
due to their oscillatory tails leads to a force of the type f(d) = g cos(βd)e−αd.
It is therefore reasonable to model the evolution of the radius of a circular
domain wall using the following ansatz:

dtR(t) = − γ

R
+ g cos(β2R)e−α2R, (21)

where α and β are calculated from the real and imaginary parts of the eigenval-
ues of the most undamped spatial modulations of the homogeneous solutions.
β corresponds to the wavenumber of the modulations, α is the decay rate
of the modulations and vanishes at the modulational instability point. For
simplicity we assume a linear dependence of α with the pump. This simple
eikonal equation qualitatively reproduce the bifurcation structure and region
of existence in the parameter space of the SDS (see the right panel of Fig. 35).
An important feature of this discrete family of SDS is that, at difference with
1-D systems, higher order SDS of larger size may have lower thresholds than
the fundamental one (see Pesch et al. (2007)).

Finally, it is important to mention that locked SDS are not the lone circular
structures that can be observed in photonic devices. Circular domains of one
phase embedded into the other can be stabilised by a careful balance of the
curvature shrinking of large droplets and an incipient modulational instability
of a flat front that leads to the growth of small domains (Gomila et al. (2001,
2003)). Noise can also have non-trivial effects on locked fronts in space as
demonstrated by Rabbiosi et al. (2002, 2003).

63



6 Applications of cavity solitons

6.1 Positioning of SDS and all-optical memories

As discussed in the previous sections, the single SDS is bistable and can be set
and reset by an optical control pulse. Hence a SDS can represent an optical
“bit”. Due to the fact that they can exist anywhere in the transverse plane
of a photonic device, there is, in principle, a multitude of parallel channels
available in a single device, thus creating the prospect of controllable memory
arrays. Pioneering work putting forward this application of SDS was done in
(McDonald and Firth (1990); Rosanov (1991)).

As it was discussed already in Sec. 28, an ideally homogeneous broad-area de-
vice possesses translational symmetry (limited by the extent of its apertures,
of course) so that spatio-temporal noise will couple to the neutral mode and
lead to an erratic motion of the SDS (Firth and Scroggie (1996); Spinelli et al.
(1998)). This random motion needs to be suppressed for applications. This
can be achieved by introducing intentional parameter modulations that are
larger than typical noise amplitudes. The SDS will move in the potential or
“landscape” induced by the perturbation until they reach a local minimum
where the coupling to the odd neutral mode vanishes (cf. Eq. (4)). In driven
systems, this perturbations is most conveniently introduced by phase modula-
tions in the holding beam as originally suggested by Firth and Scroggie (1996).
In Fig. 36 a square matrix is defined by a phase modulation in the holding
beam driving a cavity with a saturable absorber. A number of SDS is initiated
(panel a) which drift in the direction of the local gradients until they reach
a local minimum. Here, they form the letters “IT” (panel b). Obviously, the
parameter modulation not only sustains the information “IT” against noise
but also relaxes the requirements for the aiming accuracy of the WB. It is
sufficient to hit the basin of attraction of the pixel sought after.

Trapping of a laser SDS in a phase trough obtained by the displacement of an
intra-cavity lens was reported soon afterwards (Taranenko et al., 1997). The
first realization of an array of SDS was achieved in sodium vapor with optical
feedback (Schäpers et al., 2001). There, SDS were pinned on a 2×2-array by
means of the phase and amplitude modulations induced by Fresnel diffraction
from a square aperture placed in the holding beam just before the nonlinear
medium.

It should be mentioned that though the HB is useful in controlling the position
of SDS on the one hand, it can be also the origin of undesired spatial variations.
Short-scale spatial noise can be minimized by spatial filtering but long-scale
variations due to the spatially varying beam profile are more difficult to avoid
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Fig. 36. Numerical simulation: Writing the letters IT in SDS on a square array of
pixels created by a phase modulated pump. The real part of the field E is shown
at (a) 20 and (b) 800 cavity lifetimes [Reprinted figure with permission from Firth
and Scroggie (1996). Copyright 1996 by the American Physical Society.]

(Rosanov (1991); Taranenko and Weiss (2001); Schäpers et al. (2003)). In most
experiments a Gaussian intensity profile is used, driving the SDS to the beam
center in many cases (Taranenko and Weiss, 2001; Hachair et al., 2009; Elsass
et al., 2008). This motion is not only due to the direct action of the amplitude
gradient of the HB but also to the phase gradients indirectly induced because
the HB creates carriers (or changes the atomic states) which in turn change the
refractive index. As a result, the HB creates a background lensing effect, which
can either enhance the tendency of the SDS to move towards the center (in
a self-focusing situation) or push the SDS towards the beam wings (in a self-
defocusing situation). For example, SDS in sodium vapor with single-mirror
feedback were found to prefer an equilibrium location on a circle at a finite
distance from the beam center due to an interplay of the background phase
gradients (pushing outwards) and the amplitude gradients (pushing inwards)
(Schäpers et al., 2003). This behavior is apparent for the clusters depicted in
Fig. 3.

Forcing a large number of SDS on a pixel array was demonstrated in two
independent LCLV experiments (Gütlich et al. (2005); Bortolozzo et al. (2005);
Bortolozzo and Residori (2006); Gütlich et al. (2007)). Fig. 37a illustrates
that the device as manufactured supports SDS only in a limited area of the
aperture (lower left area for the bias conditions chosen) (Gütlich et al., 2007).
In addition to this large-scale inhomogeneity there is disorder on small-scales
which pins the position of the SDS and leads to the rather irregular positioning
apparent in Fig. 37a. We discussed the relevance of disorder for pinning before
for the semiconductor cavities. The relative position of SDS is also affected by
mutual interactions, if they are close.
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Fig. 37. Position control using an external incoherent amplitude control. a) Spon-
taneously appearing SDS in the uncontrolled system. b) The spatial distribution of
the external control consisting of a square lattice with Gaussian shaped peaks at
the lattice points (not exactly to scale with a) and c). c) Array of SDS pinned by
the external control. (Courtesy of C. Cleff, adapted from Gütlich et al. (2007)).

Then a control signal is generated by a spatial amplitude modulation of an
incoherent light beam via a spatial light modulator (SLM) and injected onto
the writing side of the LCLV. A phase modulation, controllable in strength
and spatial shape, is then added to the coherent beam reflected at the read-
out side. An example realizing the numerical suggestion of a square lattice
in Fig. 36 is shown in Fig. 37b. Fig. 37c shows that an essentially perfect
positioning of the SDS can be achieved by this method. Furthermore, the
control signal can be dynamically reconfigured and thus the configuration of
SDS changed. This degree of freedom is not available in arrays of bistable
pixel created by micro-machining. Particularly important is that positioning
control by phase modulation of the HB was also achieved in a semiconductor
VCA (see Fig. 13, (Pedaci et al., 2006)).

It turns out, however, that it is still a challenge to ensure that all the SDS
in these induced arrays are simultaneously bistable (Schäpers et al. (2001);
Pedaci et al. (2006); Gütlich et al. (2007)). An interesting and challenging line
of research is to compensate inhomogeneities by suitably matched perturba-
tions as achieved for example in LCLV to a great extent (Gütlich et al., 2005).
Corresponding experiments are underway for laser SDS (Radwell et al., 2009).

Although the control of the position of SDS has made tremendous progresses in
recent years, a competitive optical memory based on SDS remains an objective
difficult to achieve. This is due to the fact that the area of SDS is given
roughly by a few times the diffraction parameter of a plano-planar cavity, i.e.
the minimal area coupled by diffraction. It is given by

a =
vgλ0

4πnbκ
, (22)

where vg is the group velocity of the light, λ0 the vacuum wavelength, nb the
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background refractive index and κ the field decay rate in the resonator (Spinelli
et al., 1998). For typical semiconductor microcavities it is about (4.2 µm)2 and
a typical size of a SDS is 10 µm FWHM (Barland et al. (2002); Tanguy et al.
(2008a)). SDS at telecommunication wavelengths are expected to be larger by
25%. Decreasing the size of SDS by decreasing the cavity finesse (and hence
increasing κ) is an option but this will increase the pumping requirements.
There are interesting suggestions to manage SDS size by applying the tech-
niques discussed in Sec. 4, which might enable wavelength size SDS (Staliunas,
2003). Nevertheless, regarding the fact that current hard drives have a capacity
of about 500 bits/µm2 and holographic optical memories reach 800 bits/µm2,
it seems that a SDS memory is only viable if it is directly connected to some
all-optical processing applications in a photonic network. The most promising
attribute of SDS in terms of applications is their mobility, since it is a feature
with which micro-machined pixels cannot compete.

6.2 Exploring the mobility of SDS

As stated above, it seems to be fruitful to exploit the mobility of SDS for
applications. Eq. (4) shows that a SDS should drift across the aperture as
long as it is not in an extremum of the perturbing potential (Firth and Scrog-
gie (1996); Scroggie et al. (2005)). Indeed drifting SDS were observed in the
earliest CSL due to a phase gradient introduced by tilting one of the cavity
mirrors (Saffman et al. (1994); Taranenko et al. (1997)). Drift is also induced
in feedback system if the feedback mirror is tilted (Schäpers et al., 2001). Both
in the CSL and in the feedback system, it was demonstrated that SDS can be
ignited at one side of the device aperture and drift across the aperture due to
the mirror tilt until they disappear at the opposite side of the device (Tara-
nenko et al. (1997); Schäpers et al. (2001)). This process can be repeated over
and over again, if pulses from the WB are repetitively injected. We will show
in the next section that this opens up the possibility of an all-optical delay
line for an optical bit stream.

Quantitative investigations on SDS drift were recently performed in a LCLV
(Gütlich et al. (2007); Cleff et al. (2008)). It was confirmed that the speed
of the SDS is proportional to the strength of the imposed phase gradient as
expected from Eq. (4), at least on “average”. The erratic deviations from the
expected ideal behavior in speed and direction of drift are due to background
gradients related to imperfections of the device (Gütlich et al. (2007); Cleff
et al. (2008)). A modulation in SDS speed can be induced by superimposing a
modulation onto a gradient. Strong perturbations can be used to channel the
motion of a SDS, also around corners. Barriers can be constructed obstruct-
ing SDS motion but leaving a gap open at some desired output port. Many of
these features as well as the vectorial character of the projection described by
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Drift

a) b)

Drift

Fig. 38. a) Line structure geometry for a control signal to guide a SDS in a LCLV.
b) Trajectories of two SDS. One is guided from the start and stopped by inhomo-
geneities. Another one moves into the line structure and is guided afterwards. The
scale bar in panel b) corresponds to 1 mm. (Courtesy of C. Cleff, adapted from
Cleff et al. (2008)).

Eq. (4) are nicely illustrated in Fig. 38. The scheme (panel a) illustrates the
ideal situation: A phase gradient is introduced which should lead to a drift of
SDS from the upper right towards the lower right of the aperture. In addi-
tion, a vertical channel is defined which channels SDS motion. Two SDS are
positioned in the upper half of the aperture, one “free” to follow the gradient,
one starting in the channel. As one can see in Fig. 38b, the “free” SDS follows
the gradient with minor corrections due to the small-scale inhomogeneities of
the background, whereas the other stays in the channel. Time resolved obser-
vations show that the two SDS are always at the same height, i.e. the vertical
component of the velocity is the same. Further down the aperture, the chan-
nel has a defect at which the second SDS is stopped whereas the first one can
enter the channels and is confined by it further downstream. These observa-
tions demonstrate very well the potential for controlling SDS via tailor-made
external modulations as well as the effects of background inhomogeneities.

6.3 All-optical delay line

Future photonic networks will require all-optical routers (see, e.g., Boyd et al.
(2006)) for high-speed switching of data packets. If new packets are arriving
when a router is busy, they need to be buffered in an all-optical delay line.
Hence delay lines or “slow light” are considered to be key elements of such
networks (see, e.g., Boyd et al. (2006); Gauthier (2007); Editorial (2007)) and
reference therein for a review). This delay should be continuously tunable.
The state-of-the-art techniques for slowing light modify the longitudinal group
velocity, i.e. they rely on dispersion. Nearly all proposed systems use some kind
of resonance. The field is too vast to give a proper review here and we refer
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Fig. 39. Passage of a cavity soliton in front of a linear array of 5 detectors (A-E). Left
panel: time traces of these detectors, displaced vertically by 0.02 units for clarity.
Detector A monitors the point addressed by the writing beam, applied at time
t = 0. Right panel: positions of the detectors in the transverse plane (indicated by
squares). The area monitored by each detector has diameter less than 7.2 µm and the
separation between neighboring detectors is 8.9 µm. Also shown is a time-averaged
output image of the VCSEL during the CS drift. [Figure reprinted with permission
from Pedaci et al. (2008a). Copyright 2008 of the American Institute of Physics.]

to Boyd et al. (2006); Gauthier (2007); Editorial (2007); Pedaci et al. (2008a)
and references therein.

As indicated in the previous section, drifting SDS open a fundamentally differ-
ent access to an optical delay line. Stationary SDS in a cavity can be considered
as “stopped light”. After a transient, the SDS lives in the cavity forever. By
perturbing the symmetry, the SDS acquires a small, controllable transverse
velocity component leading to a delay between injection and read-out at dif-
ferent positions within the aperture. The idea was probably first formulated
by Kuszelewicz (1997) and worked out in Firth (2000). A demonstration of the
feasibility of this scheme in a semiconductor microcavity was given recently
in Pedaci et al. (2008a).

The system under study was a vertical-cavity amplifier (see Fig. 2). With
the help of cylindrical lenses the HB was formed to channel the SDS to a
line so that spatio-temporal dynamics can be resolved by a linear array of
fast avalanche photodetectors (Fig. 39 right panel). Addressing takes place at
point A in the presence of a phase gradient. After the WB is switched off, a
SDS forms and drifts along the channel until it decays after some distance,
presumably due to inhomogeneities. The drift distance is 36 µm, the delay
7.5 ns, so the average speed is about 4.7 µm/ns (supersonic). This drift speed
is of the order of magnitude expected from numerical simulations (Pedaci
et al., 2008a).

The performance of a delay line is commonly assessed by two criteria: the
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delay-bandwidth product M or, for digital signals, the ratio between delay
and the bit period (Tucker et al., 2005) and the maximal operating speed.
M corresponds to the maximum number of bits which can be stored in the
delay line (Tucker et al., 2005). For the single pulse, M varies but always
lies between 2 and 2.5. In previously-described slow-light systems based on
dispersion in the vicinity of electronic, vibrational or cavity resonances (Boyd
et al. (2006); Gauthier (2007); Editorial (2007); Pedaci et al. (2008a) and the
references therein) M is of order of one. This first demonstration of a SDS
delay line already compares quite well with these numbers, although M ≈ 50
was recently demonstrated using slow light in-between two absorptive atomic
resonances (Camacho et al., 2006) (with some pulse distortion and significant
absorption).

One issue affecting the operation speed of the SDS-based scheme is the possi-
bility of a “traffic jam” at the injection point: Successively written SDS need
to be sufficiently apart in order to avoid patterning effects due to interaction
between SDS resulting in timing jitter. It turns out that a pulse-to-pulse dis-
tance greater than about ten carrier lifetimes is a safe timing leading to a
total bandwidth limit of about 90 Mb/s or M ≈ 0.7, expressed as delay/bit-
window. A speed-up of the device can be achieved by shortening the carrier
lifetime (Pedaci et al., 2008a).

Larger values of M can be obtained using resonators of larger transverse di-
mension and improved homogeneity. Although this is challenging (see the next
section), there seems to be no barrier, in principle, whereas systems relying on
linear resonances suffer from an intrinsic trade-off between the bandwidth of
the slow-light transmission window and the steepness of the refractive index
spectrum which determines the slowdown factor (Gauthier (2007); Khurgin
(2005)). Cascading many devices, e.g. using microresonators, solves this issue
for perfect devices (Xia et al. (2007); Notomi et al. (2008)) but in reality one
can expect problems due to disorder like for the SDS-based scheme. Also sys-
tems operating close to a photonic band-gap (Mok et al., 2006) are sensitive to
disorder. It hence appears that all-optical delay lines based on very different
approaches share actually many common problems. The only exception seems
to be a system which uses wavelength shifting to modify the group velocity
(Okawachi et al., 2006). It achieves excellent M , around 1200, but at the cost
of significant complexity in the setup. Further developments in this area of
research are expected soon.

6.4 Delay lines in a CSL and spontaneous motion of LCS

The demonstration of several schemes of a CSL discussed in Sec. 3 opens
interesting new opportunities for a delay-line. First, the fact that no HB is

70



necessary and hence no fixed phase relationship of the WB to the device
simplifies the implementation in applications. Second, lasers can be faster
than amplifiers, the relevant time scale is given by the relaxation oscillation
or 1/

√
γ. The absence of the HB is actually an obstacle to obtain drift because

it is a convenient way to break the parity without affecting the existence region
and properties of the SDS much. Luckily it turns out that CSL models seem
to have robust regions in parameter space in which SDS drift spontaneously
with a speed depending on parameters. This behavior occurs if an asymmetric
internal perturbation of the SDS becomes degenerate with the translational
Goldstone mode (Scroggie et al., 2002) and is a general feature of SDS (see,
e.g., Bödeker et al. (2003) for reaction-diffusion systems).

In the class A case of a LSA (i.e. an instantaneous response of the medium),
the equation of motion for the intra-cavity field has an additional symmetry
with respect to a Galilean transformation (Rosanov (2002); Fedorov et al.
(2000)). As a consequence, every stationary solution generates a family of
moving solutions with arbitrary velocity, which can be selected, e.g. by tilting
the WB with respect to the cavity axis. This symmetry is broken by a finite
relaxation rate, but moving SDS survive in wide parameter regimes in two-level
models (Fedorov et al. (2000); Rosanov (2002)). Moreover, solutions with a
periodically modulated velocity and bistability between stationary and moving
solutions are found (Fedorov et al., 2000). Spontaneously moving SDS were
obtained recently also in the semiconductor model (Prati et al., 2007) discussed
earlier (Prati et al., 2009). The speed is some µm/ns, similar to the amplifier
case and can be tuned over a large range by changing the pumping of the
active medium (Prati et al., 2009).

Spontaneous motion is also found in simplified models of the VCSEL with
FSF (Paulau et al., 2008) (between the circle and the cross in Fig. 21). In-
deed, drifting localized excitations were found experimentally in the scheme
with feedback from a diffraction grating (Tanguy et al., 2008b), where the spa-
tial symmetry is broken by a mechanism similar to a mirror tilt: As indicated
in Fig. 16b, the wavefront of the returning beam will be slightly tilted with
respect to the one of the emitted beam, if the frequency of the LCS is not
exactly at the grating frequency, which is usually not the case (Tanguy et al.
(2008b); Paulau et al. (2008); Scroggie et al. (2009)). As we have seen, the
phase gradient in the tilted wavefront should induce a drift motion. This drift
motion is usually pinned at device inhomogeneities (Tanguy et al. (2008a,b))
but parameters and locations in the device can be found, where a drift is pos-
sibly over a distance of 50 µm with an average velocity of about 1.4 µm/ns.
These figures of merit are very similar to the amplifier case. During the drift,
the tilt angle in far field changes to be slightly off-axis. This is probably an
intrinsic feature of drifting LCS (Paulau et al. (2007, 2008)) but further exper-
imental and theoretical studies might be helpful to establish that the drifting
structure is a soliton indeed.
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6.5 Soliton force microscopy

As mentioned already at several occasions within this article, the positioning
and drifting behavior of SDS is strongly affected by spatial disorder which
seems to be unavoidable in all solid-state materials. Though the situation is
better in gases – the optical quality of atomic vapors is far superior (Schäpers
et al. (2001); Ackemann et al. (2001)) – obviously these are not very attractive
for applications for many other reasons. Given that these imperfections are
ubiquitous and to a great extent phase perturbations – i.e. not straightforward
to detect by simple intensity measurements – one can ask the question whether
it is fruitful to turn the argument around and use the extreme sensitivity of
SDS to disorder to characterize this disorder. For example, one might char-
acterize the stiffness of a trap, i.e. the curvature around a local minimum of
the potential, Φ(x) = bx2/2, by superimposing a known gradient, Φ(x) = ax,
by an external perturbation. The SDS will be displaced by this perturbation
to a location where the gradient of the total potential, (gradΦ)(x) = a + bx
vanishes. From a measurement of the displacement of the SDS, xeq = −a/b,
the curvature parameter can be obtained (Firth and Ackemann, 2008). Due to
the fact that it relies on the (non-Newtonian) force of the background on the
SDS, one might refer to it as soliton force microscopy (SFM). Alternatively,
one could measure a gradient by injecting a small beam providing a circularly
symmetric trap. The spatial resolution of the scheme is about the size of the
SDS (i.e. about 10 µm in typical semiconductor microcavities). Atomic force
microscopy (AFM) has a much better resolution but is is impossible or at
least very tedious to scan areas with a size above one micrometer. Moreover,
AFM can only probe surfaces. White-light spectrometers, which are used in
many fabrication labs, have typically only a resolution of some hundreds of
micrometer and also a spectral resolution not better than a few tens of GHz.
Hence the SFM might provide a nice device for the intermediate range.

A variant of the idea sketched above was recently applied to a vertical-cavity
amplifier (Pedaci et al., 2008b). The spontaneous emission of the VCSEL
used looks fairly homogeneous except for some enhancement due to current
crowding at the perimeter (Fig. 40 upper left). A fringe pattern covering the
whole aperture is superimposed onto the HB. In the direction perpendicular to
the fringe this will pin the SDS, but along each fringe the intensity is uniform,
and the SDS are free to move. The system is initially prepared such that several
SDS are present and distributed in the device. If a vertical fringe pattern is
slowly shifted horizontally across the device, a pattern like the one displayed
Fig. 40 (upper center) is obtained. The SDS do not follow a straight horizontal
line but move up and down along the stripes during the shift because there are
attracting and repelling defects in the device which deflect the motion. This
procedure is repeated along the horizontal, vertical, +45, and -45 orientations
in the two directions of motion. The video frames acquired for each position
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Fig. 40. Illustration of a SFM process in a vertical-cavity amplifier. Upper row:
Experiment. Left: spontaneous emission profile of the VCSEL. Center: SDS trajec-
tories when vertical fringes are dragged towards the left. Right: map of the defects
in the VCSEL structure as the result of the superposition of several scans. Lower
row: Simulations. Left: SDS trajectories in the case of vertical fringes adiabatically
shifted toward the left. Center: map of the defects in the VCSEL structure as the
result of the superposition of several scans. Right: superposition of the map and the
surface defined by Θ(x, y) = −2.0 (Reprinted with permission from Pedaci et al.
(2008b). Copyright 2008, American Institute of Physics).

and orientation of the fringes are all added. The resulting image is a gray-
scale map of the aperture where black (white) corresponds to high (zero)
possibility to host a SDS, i.e., to attractive (repulsive) local inhomogeneities
(Fig. 40 upper right). For an ideal defect-free medium, such analysis would
result in a homogeneously gray map. The isolated dark points in the real
systems correspond probably to local trapping defects (where the blackness
gives an indication of its depth), whereas the grayish lines represent probably
ridges which serve only as traps for certain orientations of the fringes. Note
the contrast of this map to the homogeneous spontaneous emission pattern.

The procedure was repeated in numerical simulations where variations in cav-
ity resonance conditions (total span about 10 GHz in optical frequencies) due
to growth fluctuations in active zone, spacer layer or Bragg reflectors were as-
sumed. The experimental observations were reproduced qualitatively (Fig. 40
lower left and center). Furthermore, the simulations allow for a direct com-
parison between the spatial distribution of the variations and the SFM-map
giving support to the expectation that the most prominent inhomogeneities
are fluctuations of the cavity resonance. Indeed, it is found that regions with
a detuning Θ < −2 are attracting and the others repelling. Also the trap and
ridge hypothesis is supported by the simulations. Pedaci et al. (2008a) esti-
mated that a resolution of the order of 300 MHz is reached, which is much
better than typical grating spectrometers.
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Obviously, one would like to compare the SFM-map with a map of the res-
onance and gain conditions obtained by linear reflection measurements for a
further assessment of accuracy, sensitivity and cost-benefit of this method.
In the amplifier scheme, a tunable laser is needed but that is not the case
for the VCSEL with frequency-selective feedback making it potentially much
simpler. Indeed, first measurements show that similar maps can be obtained
also in that system (Radwell et al., 2007).

In any case these experiments illustrate that SDS are sensitive to detuning
fluctuations, which translate to a sub-monolayer accuracy. One possibility to
reduce this sensitivity is to reduce the finesse at the expense of increasing the
driving power. This is to be explored in future studies.

7 Conclusions

In this review we have examined some of the many interesting features and
potentially useful properties of spatial dissipative solitons, ranging from fun-
damental issues in nonlinear science and statistical physics to applications in
state-of-the-art photonic devices.

In one transverse dimension a general bifurcation scenario for SDS – subcriti-
cal homoclinic snaking – is predicted by a powerful and attractive theory, but
experimental evidence is limited and some observations appear to be in contra-
diction with the theory. From an applications perspective, detailed verification
of homoclinic snaking is not really the most pressing issue since multi-stability
and controllability of SDS are the real key requirements. In fact, independent
(non-interacting) SDS in any homogeneous system naturally give rise to a
multi-stable snake-like bifurcation diagram. Inhomogeneities and interactions
will inevitably distort and tilt this generalized snake, reducing the degree of
multi-stability. The focus, therefore, should be diagnosis and elimination or
compensation of these effects. Understanding the interaction of disorder and
nonlinearity is thus a key issue which needs to be addressed in semiconductor
microcavities for applications. Nevertheless, we envisage that this quest will
feed back to give fruitful impetus to fundamental theoretical considerations.

We conjecture that the early work on SDS in periodic media we have reviewed
will develop significantly due to the tremendous possibilities in controlling light
brought about by photonic crystals. On the fundamental side, the connection
between SDS in discrete systems and in those with continuously modulated
parameters needs to be worked out in more detail. In experiments, an impor-
tant milestone will be the observation of discrete and photonic-crystal induced
SDS.
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We discussed the impressive recent progress in cavity soliton lasers and it is
clear that the dynamics, stability, interactions and clustering of SDS in lasers
will be important subjects in future years. For applications, robust schemes
with monolithic integration of the gain element to the frequency-filter or ab-
sorber section need to be developed. There seems to be no obstacle in principle
to the transfer of schemes based on 980 nm devices to telecommunication wave-
lengths. However, material issues are more demanding in that region, and so
the implementation is a significant challenge.

Finally, mode-locking of LCS is an intriguing and important future challenge.
The longer–term vision is to achieve three-dimensional or spatio-temporal lo-
calization (Wise and Di Trapani, 2002) by combining spatial localization in
the transverse plane with mode-locking. This would lead to pulses shorter than
the extent of the optical system in propagation direction (or shorter than the
round-trip time in the temporal domain). We noted that the pulses in mode-
locked lasers can be understood as temporal dissipative solitons, at least in
some operating regimes (see the contributions in Akhmediev and Ankiewicz
(2005a)). It seems likely, however, that mode-locked LCS could be obtained
in VCSELs with FSF or with saturable absorption, operating on many exter-
nal cavity modes. 3D SDS in a cavity (previously termed cavity light bullets
(Brambilla et al., 2004)) could thus be achieved, at least in the “average–
soliton” sense. Furthermore, telecommunication pulse rates (10 Gb/s and be-
yond) ought to be feasible in such systems.
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Radwell, N., Ackemann, T., Jäger, R., 2008. EOS Annual Meeting TOM
6, Paris, France, Sep 29 - Oct 2, 2008. Cavity solitons in vertical-cavity
surface-emitting lasers with feedback from a volume Bragg grating.

Radwell, N., Ackemann, T., Rose, P., Cleff, C., Denz, C., 2009. Unpublished.
Radwell, N., Tanguy, Y., Ackemann, T., 2007. Unpublished.
Remoissenet, M., 1994. Waves called solitons: Concepts, Experiments.

Springer, Berlin, Heidelberg, New York.
Residori, S., 2005. Patterns, fronts and structures in a liquid-crystal-light-valve

with optical feedback. Phys. Rep. 416, 201272.
Richter, R., Barashenkov, I. V., 2005. Two-dimensional solitons on the surface

of magnetic fluids. Phys. Rev. Lett. 94, 184503.
Riecke, H., 1999. Localized structures in pattern-forming systems. In: Pattern

Formation in Continuous and Coupled Systems. Vol. 115 of IMA. Springer,
New York, pp. 215–228.

Rosanov, N. N., 1991. Switching waves, autosolitons, and parallel digital-
analogous optical computing. Proc. SPIE 1840, 130–143.

Rosanov, N. N., 1996. Transverse patterns in wide-aperture nonlinear optical
systems. Progress in Optics XXXV, 1–60.

Rosanov, N. N., 2002. Spatial hysteresis and optical patterns. Springer Series

85



in Synergetics. Springer, Berlin.
Rosanov, N. N., 2005. Solitons in laser systems with saturable absorption. In:

Akhmediev, N., Ankiewicz, A. (Eds.), Dissipative Solitons. Lecture Notes
in Physics. Springer, New York, pp. 101–130.

Rosanov, N. N., Fedorov, S. V., 1992. Diffractive switching waves and autosoli-
tons in a laser with saturable absorption. Opt. Spectr. 72, 782–787.

Rosanov, N. N., Fedorov, S. V., Shatsev, A. N., 2005. Curvilinear motion of
multivortex laser-soliton complexes with strong and weak coupling. Phys.
Rev. Lett. 95, 053903.

Rosanov, N. N., Khodova, G. V., 1988. Autosolitons in nonlinear interferom-
eters. Opt. Spectrosc. 65, 449–450.

Rosanov, N. N., Khodova, G. V., 1990. Diffractive autosolitons in nonlinear
interferometers. J. Opt. Soc. Am. B 7, 1057–1065.

Rosanov, N. N., Semenov, V. E., 1980. Hysteresis variations of the beam profile
in a nonlinear Fabry-Perot interferometer. Opt. Spectrosc. 48, 59–63.

Ross, J., Müller, S. C., Vidal, C., 1988. Chemical waves. Science 240, 460–465.
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cavity solitons and drifting excitations in broad-area vertical-cavity surface-
emitting lasers with frequency-selective feedback. Phys. Rev. A 78, 023810.

Taranenko, V. B., Staliunas, K., Weiss, C. O., 1997. Spatial soliton laser:
localized structures in a laser with a saturable absorber in a self-imaging
resonator. Phys. Rev. A 56, 1582–1591.

Taranenko, V. B., Weiss, C. O., 2001. Incoherent optical switching of semi-
conductor resonator solitons. Appl. Phys. B 72 (7), 893–895.
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