
This version is available at https://strathprints.strath.ac.uk/18714/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Impact of Varying Intensities of Blue-Light Exposure on 3T3 cells
S. Smith¹, M Maclean², SJ MacGregor², JG Anderson² & MH Grant¹

¹ Bioengineering Unit and ² Robertson Trust Laboratory for Electronic Sterilisation Technologies, University Of Strathclyde, Glasgow, UK

INTRODUCTION: There is the need to develop a compatible sterilisation method for hybrid biomaterials. High-intensity blue light in the 405 nm region has been shown to be an effective bacterial decontamination method [1], to cause no noticeable damage to the gross structure of type-I collagen monomer (when treated at 10 mW/cm²) [2], and to have no noticeable effect on 3T3 cell viability, growth rate, redox state or lactate dehydrogenase (LDH) leakage (at 1.0 mW/cm²) [2]. The purpose of this research was to investigate the effect of varying the blue-light intensity on the 3T3 cell response parameters.

METHODS: 3T3 cells, at a seeding density of 2 x10⁴ cells/cm², were exposed to the blue-light source at intensities of 10, 1 and 0.1 mW/cm², for 1 hour. Cell responses were measured for up to 4 days post treatment using the MTT and neutral red (NR) microplate assays, LDH leakage and the intracellular levels of reduced glutathione (GSH) and protein.

RESULTS AND DISCUSSION: At treatment intensities of 0.1 and 1 mW/cm² there was no significant negative effect on any of the response parameters. For example, MTT was 150 ±4% of control cells, NR was 102 ±1%, LDH leakage 70 ±4% and GSH 112 ±8% 1 day after treatment with blue-light at 0.1 mW/cm². Figure 1 shows that, in contrast, treatment with 10 mW/cm² had a negative effect on cell responses 1 day after treatment.

A small drop in viability after 1 day was observed but was found only to be significant using the NR assay. Treatment at 10 mW/cm² had no significant effect on LDH leakage, therefore it does not appear to compromise cell membrane integrity. The most notable effect of blue-light treatment at 1 day was on intracellular levels of GSH, where an increase was observed (0.030 ±0.022 GSH/mg protein compared to 0.014 ±0.004 GSH/mg protein for the untreated control). It is known that blue-light causes excitation of endogenous porphyrins, generating light-induced reactive oxygen species (ROS). The increased GSH levels observed suggest that the blue-light at 10 mW/cm² results in the production of ROS and induces a state of oxidative stress within the cells. This effect was reversible, and by 2 days post treatment the GSH levels were comparable to those of the untreated control (0.038 ±4 and 0.044 ±4 GSH/mg protein, respectively), providing evidence of recovery. The cell growth rate also showed evidence of recovery post-treatment with all control and treated cultures reaching confluence at day 3.

CONCLUSION: Blue light treatment at intensities of 1 mW/cm² and lower has no significant affect on 3T3 cell response parameters. This finding together with the lack of effect on type I collagen suggests that blue light shows excellent potential to be utilised as a sterilisation method for hybrid biomaterials.


ACKNOWLEDGEMENTS: SS is funded by EPSRC Doctoral Training Centre (DTC) in Medical Devices.