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Abstract.  

This paper suggests an automated approach for fault detection and classification in 

roller bearings, which is based on pattern recognition and principal components 

analysis of the measured vibration signals. The signals recorded are pre-processed 

applying a wavelet transform in order to extract the appropriate high frequency 

(detailed) area needed for ball bearing fault detection. This is followed by a pattern 

recognition (PR) procedure used to recognise between signals coming from healthy 

bearings and those generated from different bearing faults. Four categories of signals 

are considered, namely no fault signals (from a healthy bearing) inner race fault, outer 

race fault and rolling element fault signals. The PR procedure uses the first six 

principal components extracted from the signals after a proper principal component 

analysis (PCA). In this work a modified PCA is suggested which is much more 

appropriate for categorical data. The combination of the modified PCA and the PR 

method ensures that the fault is automatically detected and classified to one of the 

considered fault categories. The method suggested does not require the knowledge/ 
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determination of the specific fault frequencies and/or any expert analysis: once the 

signal filtering is done and the PC�s are found the PR method automatically gives the 

answer if there is a fault present and its type.  

 

Keywords: fault detection, vibration-based monitoring, ball bearing fault detection, 

signal analysis, pattern recognition, principal component analysis 
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&1. Introduction 

Rolling element bearings constitute a major part of almost every rotating machine. 

There are a number of mechanisms that can lead to bearing damage and eventually 

failure, including mechanical damage, crack damage, wear damage, lubricant 

deficiency, corrosion and plastic deformation. When the smooth rolling contact 

surfaces are marred, higher stress conditions imposed on the surface reduce bearing 

life significantly. Thus the ability to detect bearing faults at an early stage is a major 

concern. Fault detection and identification in rolling element bearings has been a 

subject of extensive research over the past two decades [1-9,11-16]. Vibration-based 

monitoring is the most widely applied technique.   

A fault in a ball bearing would normally create pulses with very low energy and 

wide-band spectra. On most occasions, especially when the fault is small, these pulses 

will be small and they will be buried in noise and in much higher energy low 

frequency components of the measured acceleration signal. This is the reason why 

ball bearing faults are not easy to detect. Since detecting and identifying ball bearing 

faults is quite a difficult job a lot of the methods suggested concentrate on making the 

detection possible and on the enhancement of the detection process rather than on 

making it automatic. Only a small number of papers address the importance of 

making the process automatic and attempt to develop an automatic procedure for ball 

bearing fault detection and/or identification. The advantage of an automatic procedure 

is that it does not require any further analysis and excludes the need for an 

experienced decision of whether or not there is a fault and/or what kind of fault it is to 

once the suggested transforms are done. This paper suggests a novel and easy to apply 

automatic process for ball bearing fault detection and identification, which does not 
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require any human intervention. Thus the novelty and the contribution of this research 

is mainly in the development of an automatic process, which is capable of detecting 

and recognizing a ball bearing fault with a rather high success rate.   

The application of traditional spectral analysis for ball bearing fault detection is 

somewhat limited due to the nature of the signals produced by the presence such 

faults. The characteristic frequencies that were found for the pulses created by 

different ball bearing faults cannot be found in the spectra of the raw signals recorded 

on a bearing [1,3,7].  A basic ball bearing fault detection procedure might apply 

enveloping and calculation of the cepstrum [7]. Another example for a simple ball 

bearing detection method might involve the calculation of the kurtosis of the time 

domain signal.  Unfortunately such techniques would normally work for cases of a 

well developed fault and when there is not a lot of interference with other higher 

energy components coming from noise and/or other high frequency components.  

The detection of real faults becomes problematic since the interest is primarily 

at detecting the faults at an early stage, when they are rather small. Then the pulses 

created by the fault will be of very low amplitude and will be impossible to detect in 

the raw signal or spectrum. A lot of the suggested fault detection methods for ball 

bearings involve a noise reduction in the recorded signals to facilitate the detection of 

the pulses created by the fault(s) [2,3,5,6]. A successful detection procedure should be 

able to first extract the appropriate frequency content of the measured signal and then 

detect the presence of faults in the extracted frequency band. Thus a lot of the ball 

bearing fault detection methods include a certain pre-processing and filtering to 

extract the proper frequency range from the bearing signature, clear the high energy 

content of the signal and prepare it for the detection process [1,3,4,6,9]. Different 

wavelet decompositions, filtering and enveloping are among the most frequently used 
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techniques for the purpose [1-4,6,7,10,11].  The next stage after the preprocessing is 

designed to detect and eventually localize (qualify) the fault. The cepstrum and 

different variations of it is a popular signal processing technique for detecting ball 

bearing faults [7,8]. The spectral kurtosis is an alternative of the kurtosis which 

appears more promising and was successfully applied by different authors [6,12,13]. 

However after the application of all the procedures the decision whether a fault is 

present or not has to be taken by an expert through e.g introducing a threshold value 

of the considered feature or just on the basis of comparison to previous levels 

[2,3,5,6,8,27,30].  This paper suggests a method which does not require that: once the 

wavelet filtering is done and the principal components are extracted the PR procedure 

automatically issues a decision on whether a fault is present in the bearing or not. 

Thus the method suggested here has the potential to be made completely automatic 

/and computerized/ and hence very easy to apply without the intervention of 

experienced personnel.  

The fault identification (localization) is for most methods the next stage which is 

done after the fault has been detected.  On most occasions it is done utilizing the 

specific frequencies generated by different defects. These frequencies depend on the 

rotational speed, the number of balls and their geometry. The running speed is often 

unknown and/or unmeasurable. In addition, even if the type of the bearing in the 

machine is known, the manufacturer may not be able to guarantee the number of balls 

in a given bearing [28] . Thus on some occasions the precise determination of the 

specific fault frequencies might be difficult or even impossible which in turn might 

prevent the determination of the type of fault present. There are papers that 

specifically address the determination of the running speed and these specific fault 

frequencies [28,31]. Thus it is beneficial if a fault identification procedure does not 
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rely on these specific frequencies. The procedure offered here does not use the 

specific frequencies generated by the three fault types considered. Moreover no expert 

intervention and analysis is required in order to recognize the fault present. It should 

be noted that most fault identification procedures do require a consequent analysis and 

the identification is normally done detecting the specific fault frequency  

[1-3,5,6,8,9,12-14,16,18]. There are several methods that offer an automatic fault 

detection like the ones discussed in [4,27, 29] and most of them are based on pattern 

recognition. But they do not offer automatic identification of the fault type. To our 

knowledge the only method that offers an automated approach for fault detection is 

the one suggested in [27] and it deals with faults in a gearbox. The method presented 

in  [11] has the potential and to our opinion could be made automatic, but the authors 

do not offer such an enhancement. The method suggested in this study offers an 

automatic detection and qualification (type identification) of faults in ball bearings 

without the need to estimate the specific fault frequencies. To our opinion these are 

very important features of the suggested method, because methods of such type have 

the potential of being easily incorporated and used for fault detection in real systems.  

The simplicity of the procedure suggested should not be neglected as well. As it 

was mentioned the few methods that offer automatic fault detection are based on 

pattern recognition, but they tend to apply rather complex processes like neural nets 

and/or Markov models, neural-fuzzy inference and expert systems for the purpose 

[4,11]. The PR method used here is a rather simple and intuitive one and is based on 

the one nearest neighbour approach [21]. Hence it does not require large 

computational resources and its performance is normally very fast. Another feature 

that facilitates the recognition process to a great extent is the application of a modified 

PC method  which is much more appropriate for categorical data [20,26]. The method 
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is discussed in &5. However it should be noted that most studies that feature 

application of PCA for fault detection apply the standard procedure and the use of the 

modified one is an enhancement which makes the fault recognition possible [23-

25,27, 32].  

The rest of the paper is organized as follows. Paragraph &2 deals with the 

manifestation of faults in rolling element bearings in the signals measured on the 

bearings and summarizes very briefly the suggested method. The next three 

paragraphs introduce the basic elements of the procedure suggested: &3 introduces 

briefly the wavelet transform and its application for our purposes. &4 formulates the 

problem considered as a PR problem and &5 presents the idea of PCA and the 

modified PCA used here as well as the way it is applied in this particular case. The 

experimental setup used is introduced in &6. In &7 some results, obtained using the 

suggested procedure, are presented. The paper concludes with a discussion of the 

presented methodology and the results obtained.  

 

&2.  Rolling element bearings and manifestation of faults in them. 

Rolling element bearings represent a class of bearings in which the main 

load is transferred through elements in rolling contact (rather than in sliding contact). 

The main components of such bearing are the outer race, the inner race, the cage and 

the rolling elements as shown in Fig. 1. In a rolling element bearing, impulses are 

created when a defect on a rolling surface impacts with another surface. Each time the 

defect comes in contact with another surface it makes the bearing vibrate at its natural 

frequency. This is why rolling element bearing defects are known as high frequency 

faults- in the first instance they can be detected in the frequency range where 

structural resonances dominate the spectrum. Unfortunately these are rather low 
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energy pulses that can be easily buried in high energy low frequency signals and 

noise. The impulses are generated almost periodically and their frequency depends on 

the type (location) of defect, that is whether it is an inner race, an outer race or rolling 

element defect. There are several characteristic frequencies which determine the 

spacing of short pulses for each type of fault. It is this characteristic frequency which 

is of interest because it can be used to determine the type of fault- e.g. inner race fault 

(IRF), outer race fault (ORF) or rolling element fault (REF) [3,7]. So the information 

about the defect is contained in the spacing of the impulses rather than in their 

frequency content.  However in practice, the spacing of pulses varies randomly to a 

certain extent due to varying load angle and slip as well as due to noise. Thus as a 

result of a number of random effects it becomes difficult to first find the fault in the 

high frequency range and secondly to determine its type.  

This study suggests to consider the problem for detection and type 

identification of ball bearing faults as a pattern recognition (PR) problem. The signals 

are first subjected to a wavelet transform in order to extract the appropriate high 

frequency range and as a noise cleaning procedure.  The obtained signals are then 

subjected to PCA. Only the first six principal components of the obtained signals are 

used as features for the recognition process. The following paragraphs explain briefly 

each of the procedures used and the motivation for using it as part of the process of 

signal analysis for ball bearing fault detection and identification. 

 

&3. The wavelet transform  

The wavelet transform is a time frequency representation of a signal. It uses a window 

which is shifted along the signal and for every position the spectrum is calculated. 

Then this process is repeated many times with a different window for every new 
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cycle. The result is a collection of time-frequency representations with different 

resolutions. The continuous wavelet transform of a signal f(t) is given by: 
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where s and τ are replaced by and . One of the fundamental properties of a 

wavelet is that it can decompose a signal by filtering it into a low frequency and a 

high frequency part.  Thus if one is interested in the high frequency part (which is the 

case for ball bearing fault detection) one may keep the signal more or less intact and 

discard the low frequency part. By discarding the smooth low frequency part of the 

signal one can identify areas of impulsiveness, i.e. where the original signal changes 

j2 kj2
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quickly. And the areas of impulsiveness are exactly what we are looking for when we 

are interested in the short pulses crated by a ball bearing fault. This basic idea of 

decomposing a signal is represented in Figure 2. Figure 2 also represents the basic 

steps of such a decomposition by filtering as suggested in e.g. [19]. 

 

Figure 2 somewhere here 

 

The above decomposition results in two coefficient vectors cL and cH which 

approximate the low frequency and the high frequency parts of the signal 

respectively. The                block in Fig. 2 represents the down sampling where the 

odd coefficients of the filtered signal are omitted. Thus the number of coefficients 

produced by the above algorithm is approximately the same as the number of 

elements in the original discrete signal f. Applying the wavelet transform one 

compresses the signal and retains most of the information contained in its high 

frequency and its low frequency parts. The wavelet is a hierarchical transform and it 

can be applied on several levels [4,19].  Some authors suggest that for ball bearing 

fault detection [4,6]. In this study we only decompose the signal to the first level and 

take its high frequency part cH. In this particular case applying the transform further 

to higher levels did not seem beneficial for our purposes.  

2 

 

&4. The problem considered as a PR problem.  

The problem considered in this paper is to detect a ball bearing fault and to identify its 

type i.e. recognize between different fault types. Three types of faults are considered 

in this investigation- outer race, inner race and rolling element faults. The problem is 

treated as a pattern recognition one. The categories (classes) at hand are related to 
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each fault type including the no-fault category. Thus we want to recognize among 

four categories (classes)- no fault (NF), inner race fault (IRF), outer race fault (ORF) 

and rolling element fault (REF). This can be done using the measured acceleration 

signals on the bearing. In this case each signal is first subjected to wavelet filtering 

and the vector cH representing its detailed (high frequency) coefficients is used to 

approximate the original signal f.  

So the task is to distinguish between the four categories (classes) of vectors cH. 

A PR problem normally has two stages, a feature extraction stage and the actual 

recognition stage. The feature extraction stage extracts some parameters from the 

vectors cH which form the so called pattern vectors that are further used to distinguish 

between the defined categories. Thus each signal corresponding to a certain state from 

the above categories will be characterized by its unique pattern vector c. Principal 

component analysis (PCA) [20] is the method used here to extract relevant features 

and form the pattern vectors. The first k principal components c, c=[c1, c2,�, ck]
T
 are 

then used as features (in our case k=6). The next paragraph describes the idea of PCA, 

the modification used here and how the method is applied for this particular case.  

In this study the actual recognition is done using the 1-nearest neighbour ( 1-

NN) method. The 1-NN method classifies a vector c to the category to which its 

nearest neighbour belongs. The nearest neighbour is found using the Euclidean 

distance between two pattern vectors: 

 

)c(c)c(ccc iii −−=−= T
iD                                                                  (5) 

 

The 1-NN classifier finds the nearest neighbor of c, ci, and assigns c to the class of ci. 

In order to apply this classifier one needs a �training� sample of vectors cj, among 
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which the classifier will look for the NN. The construction of the training sample is 

discussed  in &6.  

 

&5. Principal component analysis (PCA). 

The main idea of PCA is to reduce the dimensionality of a signal in the time or in the 

frequency domain while retaining most of the variance present in the data. PCA 

transforms the signals cH, into new pattern vectors c whose components are called 

principal components (PCs). The new PCs are uncorrelated. In general the first 

several PCs are responsible for a considerable part of the variance contained in the 

signals. PCA is done using the autocorrelation matrix of the vectors cH. It is 

suggested here to use a modified PCA. This modified method has some advantages 

when applied to categorical data which will be discussed later. It uses the generalised 

autocorrelation matrix, which is calculated for the whole set of measurements, rather 

than the autocorrelation matrices corresponding to each category [20,25,26].  It is 

determined using the following  relation: 

).()(
T

M

i Ep ii HCHCR ∑= ω
1i=

,                                                                       (6) 

where M is the number of categories (M=4 in this case),  p(ωi) is the a priori 

probability for the category ωi, the superscript �T� stands for transpose, E denotes the 

mathematical expectation, and iHC  is a standardised  vector from the i-th category. 

In the absence of any other information the a priori probabilities for the categories ωi 

are assumed equal p(ωi)=1/M. The first k largest eigenvalues of the correlation matrix 

R and their associated eigenvectors Φi are found. The vectors Φi are packed to form 

the transformation matrix Φ  

 12



],...,,[ kΦΦΦ= 21ĭ .                                                                                  (7)                              

A vector CH can be then transformed into a new feature c vector via 

CHĭc .=
T

,                                                                                              (8)                               

where ҏis the transpose of ĭ . 
T

ĭ

The primary idea of PCA is to transform an original vector CH into a new vector c, 

which has a smaller dimension k, k<<p. The choice of the k new variables is based on 

the variance that they are responsible for. When applied to categorical data the 

modified PCA used here (equation (6)) is expected to have other advantageous 

properties since it decreases the inter-class variance while at the same time increasing 

the between-class variance. This results in �clustering� the new PC vectors cj or 

bringing together the pattern vectors from the same category while at the same time 

increasing the distance between pattern vectors from different categories [21,25,26]. 

In this particular case PCA is aimed to first extract most of the �detailed� information 

contained in the vectors CH, since it retains most of their variability, and then group 

the obtained pattern vectors c into the defined four categories NF,IRF,ORF and REF.  

PCA has been used for a number of application including signal analysis and 

especially dynamic (acceleration) signal analysis [23-26]. In its dynamics applications 

it is indeed most frequently used for vibration-based damage and fault detection [22-

24,26]. A number of articles suggest its application for structural damage detection 

[23,24,26]. The case of structural damage and its detection from vibration 

measurements is somewhat similar to the detection of ball bearing faults. The 

presence of a fault can be seen to change some frequency ranges and the lines in these 
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frequency ranges are further used as variables, which are subjected to PCA [24,26]. In 

the present study a similar approach is taken by first applying the wavelet transform, 

which actually selects the frequency range containing the variability due to the 

presence of a fault, and then subjecting the already selected frequency lines to PCA to 

choose and weight properly only those, which are responsible for the biggest part of 

the between-class variance.  

&6. The experiment, the signals and how the method works. 

The experimental setup detailed in Figures 3a and 3b was used to record signals 

corresponding to the different conditions. The power is provided by an electrical 

motor.  

Figures 3a and 3b somewhere here 

 

To measure the vibrations an accelerometer is mounted on the square housing of 

the analysed bearing. The bearings analysed are single row deep groove ball bearings 

with eight balls (SKF 6308). Four different bearings were used to study the four 

categories namely one bearing with no fault (NF), one with an inner race fault (IRF), 

one with an outer race fault (ORF) and one with a rolling element fault (REF). The 

faults considered here are very small notches. Thus the primary interest of this study 

is to detect and identify very small faults at a rather early stage. Bigger faults are not 

considered since they are much easier to detect and identify. A bearing with an inner 

race fault is shown in Figure 4.   

Figure 4 somewhere here 
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Figures 5 and 6 represents raw signals from the four categories and the spectra 

from the three fault categories, respectively. The specific fault frequencies are circled 

on Fig 6. It can be appreciated that the signals are different but it is impossible to 

recognise the differences and thus distinguish between the four categories.  The 

frequency domain signals also cannot be used to give any clear indication for the 

signal type. So it is obvious that further transformation and analysis of the raw signals 

is necessary.  

Figure 5 and Fig 6 somewhere here 

 

Each of the signals is then subjected to a wavelet transform using Daubechies2 

(db2) and its high frequency part represented by the vector CH is taken. Figure 7 

gives the details of the bandwidths of the low and high frequency filters.   

Figure 7 somewhere here 

 

The impulses created by bearing defects are of high frequency nature and the 

high frequency part CH of the decomposed signal is considered further. Figure 8 

presents signals coming from the three different types of faulty bearings (IRF, ORF, 

REF), after the wavelet transform. The periods corresponding to each specific type of 

fault are indicated by arrows on each plot. The visual observations of these plots 

shows that the impacts are visible but it is still difficult to determine the intervals 
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between impacts which makes difficult the identification of the bearing 

condition/category vs. NF, IRF,ORF or REF.  

Figure 8 somewhere here 

 

 

 The next step is the application of the PCA to reduce the number of coefficients 

CH and extract relevant features. In this case we used the first six principal 

components, which were responsible for more than 90% of the whole variance.  

400 signals (100 from each category) were measured and used for training 

purposes. The training signals are used to estimate the autocorrelation matrix R 

(equation (6) ) and to find a sample of pattern vectors cij, i=1,�,100, with known 

categories j, j=1,2,3,4, 1-NF, 2-IRF,3-ORF,4-REF. The a priori probabilities for the 

four categories were assumed equal, p(ωi)=0.25.  For illustration purposes the first 

two principal components of some signals from the four different categories are 

shown in Figure 9. The clustering of the signals according to the introduced 

categories is already visible. The first 6 PC�s are used to form the sample of pattern 

vectors cij which will be used for recognition purposes.  

Figure 9 somewhere here 

 

Another 400 signals (100 from each category) were measured and used for 

testing purposes. They are also subjected to PCA with the already obtained matrix R 
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and their first 6 principal components are taken to form their pattern vectors. Then the 

1-NN method ( see &4) is applied to identify the category of each of these vectors.  

The whole procedure used to detect and recognise faults in ball bearings is 

depicted in Figure 10. The identification results with the pattern vectors from the 

testing sample are shown in Table 1. The results show very good recognition rate 

despite that the initial vectors CH were not recognisable using visual inspection (see 

Figure 8). 

Figure 10 somewhere here 

Table 1 somewhere here 

We would like to briefly mention that the procedure developed was also tested 

to recognise bigger faults. The faults were extended and the new signals were offered 

for recognition to the already developed system. It is worth mentioning that these 

faults were readily recognised with even higher success rate than the small faults. But 

since the primary interest here (and in general) is in detecting and recognising small 

faults and  bigger faults are much easier to detect and identify, these results are not 

given and  they are not discussed any further. 

 

&7. Discussion and some deductions. 

This study presents a method, which offers an automatic detection and 

identification of ball bearing faults. The method is developed and tested for very small 

faults which is the primary interest of such procedures when the faults are very 
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difficult to detect. It is noted that unlike most procedures offered for ball bearing fault 

detection the method suggested does not concentrate on making the fault impulses 

visible, it attempts to make the signals coming from different bearing conditions more 

distinguishable. This is achieved by applying a modified PCA approach which is 

known to enhance the separability of categorical data. The PCA is applied on the 

already filtered high frequency content signals which contain the information about 

the presence of faults. It takes those components of the CH vectors, which are 

responsible for most of the variability between the different categories and gives the 

highest weights to the components with the highest variability (the components that 

actually make the categories different). As can be seen from the results presented in 

Figure 9, even if only the first two PCs are used the effect of clustering is obvious 

and the four introduced signal/bearing categories are already visible. A simple PR 

procedure based on the 1 nearest neighbour approach is applied to achieve the fault 

detection and identification. It shows very high separation rate, namely between 94% 

and 96% of the faults are correctly detected and recognised. It should be noted that 

these results refer to the signals from the testing sample only. Most studies on ball 

bearing fault detection do not offer such results, since they tend to concentrate on the 

amplification of the small pulses created by a fault and on improving their visibility 

and detectability. Where similar results are offered the success rate seems to be 

somewhat lower. In [4] for instance similar results are offered which give the success 

rate of different methods in recognising single and multiple faults in ball bearings. It 

should be noted that some of the methods give a success rate lower than 50%. Only 

the last method which is the most complicated one gives a rather high success rate of 

99%. 
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The suggested method is automatic which makes it very appropriate for 

potential practical applications since unlike most other methods it does not require 

any human and/or expert intervention to perform the detection and the identification 

process. This quality combined with the high success rate of the method gives us 

confidence that it can be developed and successfully used for industrial applications. 

In conclusion it should be noted that in this paper the method is demonstrated 

for a specific type of setup/machine and in order to apply it to another machine or if 

the measurement point is changed a different training sample should be created. The 

procedure is still the same so it just a matter of making another training sample to 

estimate the new autocorrelation matrix. It is worth pointing out that this is the case 

with most methods that use e.g neural nets and/or pattern recognition for fault 

detection in machinery and /or structures [4,26,27,29]. The method is usually 

demonstrated for a specific machine/ setup but the application to another machine/ 

structure requires certain modifications like generating a new training sample. 
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Figure captions 

Figure 1. Main elements of a rolling element bearing and load distribution 

Figure 2.  Basic steps of wavelet signal decomposition 

Figure 3a. Experimental setup. 

Figure 3b. Sketch of the installation used 

Figure 4. Bearing with an inner race fault 

Figure  5. Raw signals from different categories 

Figure 6. Wavelet decomposition with frequency bands used  

Figure 7   Zoomed signals from the three fault categories after wavelet, with the 

corresponding periods shown 

Figure 8. The first two PC�s of some of the training vectors for the four different 

categories. 

Figure 9. Schematic of the whole process used for fault recognition 

Table 1. Percentage of correctly classified and miss-classified signals (faults) 
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Figure 1. Main elements of a rolling element bearing and load 

distribution 
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Figure 2. Basic steps of wavelet signal 

decomposition 



 

 

 

 
 

Figure 3a. Experimental setup. 
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Figure 3b. Sketch of the installation used 
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Figure 4. Bearing with an inner race fault 
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Figure  5. Raw signals from different categories a) no fault, b) inner race 
fault, c) outer race fault, d) rolling element fault 

 31



 
S1 IRF

Fourier Frequency Spectrum

0 100 200 300 400 500
Frequency

0

0.5

1

1.5

2

2.5

3
A
m
p
li
tu
d
e

0

0.5

1

1.5

2

2.5

3

 
 

ORF Signal
Fourier Frequency Spectrum

0 60 120 180 240 300
Frequency

0

0.5

1

1.5

2

2.5

A
m
p
li
tu
d
e

0

0.5

1

1.5

2

2.5

A
m
p
li
tu
d
e

 
 
REF

Fourier Frequency Spectrum

0 60 120 180 240 300
Frequency

0

0.5

1

1.5

2

2.5

A
m
p
li
tu
d
e

0

0.5

1

1.5

2

2.5

 
Figure 6. Spectra of the raw signals 
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Figure 7. Wavelet decomposition with frequency bands used 

Original signal fmax=2 kHz 
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Figure 8   Zoomed signals from the three fault categories after wavelet, 
the corresponding periods are shown a) Inner race fault, b) Outer race 

fault, c) rolling element fault 
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Figure 9. The first two PC�s of some of the training vectors for the four 
different categories. The clustering effect is visible. 
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True 

category 

Recognised category 

 NF IRF ORF REF 

NF 95 2 2 1 

IRF 1 96 3  

ORF  5 95  

BF 2 3 1 94 

 

Table 1. Percentage of correctly classified and miss-classified signals 
(faults) 

 
 

 

 

  

 
 

 
 
 

 

 

 

 

 




