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ABSTRACT

This paper presents a new theoretical model capshyeedicting the

vortex-induced vibration response of a steel cateriaer subject to a
steady uniform current. The equations governingrris-plane/out-of-

plane (cross-flow/in-line) motion are based on amnpd beam-cable
model accounting for overall effects of bendingteesibility, sag,

inclination and structural nonlinearities. The engailly hydrodynamic

model is based on nonlinear wake oscillators desgithe fluctuating

lift/drag forces. Depending on the potentially worinduced modes
and system parameters, a reduced-order fluid-simeicinteraction

model is derived which entails a significantly redd computational
time effort. Parametric results reveal maximum oesg amplitudes of
risers, along with the occurrence of uni-modal latbhenomenon.

KEY WORDS: Catenary riser; vortex-induced vibration; wake
oscillator, fluid-structure interaction, reducedier model; empirical
coefficient; uniform current.

INTRODUCTION

Steel catenary riser (SCR) has become a primarglidate for future
ultra deepwater oil/gas industry because it offeles most promising
technological and commercial solution. One of tley kssues in the
analysis and design of SCRs is to estimate andralotite fatigue
damage due to vortex-induced vibration (VIV). Nekefess, current
industrial knowledge of VIV prediction is still bed on an empirical
science and on a simplified linearized model ohigtit (e.g., top-
tensioned drilling/production) risers and pipelindherefore, many
uncertainties arise when designing the SCRs whielaetually flexible
inclined cylinders, having initial sags and varyingrvatures. As a
matter of fact, SCRs are substantially differerdndfr top-tensioned
risers (TTRs), in view of the current flow diredtioelative to the pipe
axis, which is arbitrary and different from Q@hen the flow aligns
with the SCR plane of curvature. Moreover, a slerdieg beam-cable
system has multiple natural frequencies which iy give rise to
different in-plane/out-of-plane multi modes in gd®ow/in-line VIV.

Nowadays, numerous frequency and time domain tmolpredicting
nonlinear dynamic responses of straight verticabra experiencing
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VIV are available in industry. In spite of this,ethstate-of-the-art
comparisons of VIV responses still exhibit rematkadliscrepancies
(Larsen and Halse, 1997; Chaplin et al, 2005), motdmuch is really
known about the VIV of SCRs. Perhaps, the simmeast cost-effective
way to deal with the hydrodynamics and to recréateassociated fluid
forces acting on the underwater cylindrical bodytdsimplement a
phenomenological wake oscillator model. Essentialys empirical
model contains some parameters deduced from expetairdata.

In this study, we utilize a new nonlinear wake bawr model of Skop
and Balasubramanian (1997) which has been develoased on some
experimental collections of both elastically-mouhtégid and flexible
cylinders subject to uniform flow. It has recentheen used in
predicting the VIV responses of horizontally sugpesh cables (Kim
and Perkins, 2002). To overcome some limitationa tfpical vertical
riser model, we propose a general and realistiorétieal model valid
for SCRs with arbitrary sags and inclinations. Bygling the wake
oscillators to the riser nonlinear equations, auced-order model
governing the hydro/elastic-cylinder interactionésived and solved in
the time domain, based on the potentially vorteddted modes. In
particular, we aim to predict the uni-modal lockpinenomenon and the
attainable maximum amplitudes of SCRs due to baihseflow and in-
line VIV in a sub-critical flow range of the Reyuisl number (Re).

FLUID-RISER INTERACTION MODEL

With reference to a fixed Cartesian co-ordinatdesys Fig. 1 displays
a 3-D continuum model of SCR connected from ataty floating
structure to a seabed with simply pinned-pinnecpsup. A horizontal
offset Xy and water deptly,, define a chord inclination angle of riser
(i.e. = tan'Yy/X,). Riser properties are spatially uniform, with
mass/length rf), viscous damping coefficientc)( hydrodynamic
diameter D), effective bendingEl) and axial EA) stiffness. As an
initial consideration, the steady incoming flowyhng density p) and
normal velocity V), is considered to be uniform in tt#-direction
perpendicular to the SCR plangY) of initial equilibrium curvature.
Following the Strouhal number (St) law, this ergtadl single natural
frequency (rad/s) of vortex shedding or wakg) behind the stationary
riser, i.e.aq = 276tV/D, where St 0.2 for sub-critical flow.
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floating structure

Fig. 1 Schematic model of SCR subject to unifornrent flow

Nonlinear Equations of Riser 3-D Motion

By considering the riser as a flexural sagged chlkdeelastic structure
satisfying the Euler-Bernoulli beam hypothesis, tlomlinear partial-
differential equations of riser motion about itsamdr KY) static
equilibrium may be expressed in dimensional form as
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in which s (t) denotes Lagrangian or arc-length coordinate {tinnéx)

v (y) and w represent global dynamic (static) displacementtha
horizontal ¥), vertical {¥) and transversal or out-of-plang) direction,
respectively.To denotes axial static tension of riser due to ¢ffec
weight, my, denotes potential added ma&sdA;, whereA, is circular
cross-sectional areaC,=1), and F; denotes external hydrodynamic
(lift/drag) forces leading to VIV. By accountingrfboth bending (e.g.,
Ricciardi and Saitta, 2008) and axial (e.g., Sratibl, 2007) rigidities,
Eqg. 1 is also valid for a top-tensioned riser (TDRhorizontal pipeline
with zero sag, and accounts for overall inertize (Srinil and Rega,
2007b) and structural nonlinearities which are nregfal in the case of
large displacement or deformation of SCR. It is tivaroting that the
effects of shear, torsion, seabed and internal-flmduced friction
forces, which are quite important for SCRs, are matein accounted
for. In the following, all the space-related vafes and associated
equations are non-dimensionalized with respe€t.to
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Submerged Configuration of SCR

For simplicity in an analytical study, it is here&ssumed that a 2-D
submerged static configuration of SCR is solely ttugs effective self
weight, whereas the bending restraint and the tmifurrent flow play

a role after the performance of static equilibriuthe neglected static
bending is plausible because the end boundariegimned-pinned and
the SCR curvatures are relatively small. Accordingthe higher-order
spatial derivative ok andy in Eq. 1 is disregarded, and the catenary
static profile is simply governed by

Ty =Wy @

in which a dash denotes differentiation with respecx, Wg is the
effective weight accounting for buoyancy effectdan, is a horizontal
component of riser tension which is spatially canst By directly
integrating Eq. 2 twice, thexacthyperbolic function-based formula
describing the catenary configuration reads
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whereC,; areC, are determined based on boundary conditions. Thus,
for a givenD, W, &, Xy andTy, the SCR equilibrium can be explicitly
determined and then substituted into Eq. 1 as dedded function.

y(x) = x+ QJ’f G ®)

Nonlinear Wake Oscillators

As the considered current flow is normal to the S@i&he, the cross-
flow (in-line) VIV due to lift F_ (drag, Fp) force corresponds to in-
plane (out-of-plane) motion of SCR. Thus, by neijjerthe tangential
hydrodynamics, the excitation forces per unit lerigtEqg. 1 read

F,=-F sind= —%pCLDV2 sing 4)
F,=F cosf= 1,0CL DV? co® (5)
F = ,OCD Dv? (6)

where@is a local angle of inclination (measured clocleviom the X-
axis in Fig. 1) based on Eq. 3, in whiék tari’*(y’). C_ (st) andCp (s;t)
are unsteady lift and drag coefficients per unmgté, respectively. It is
worth noting that the mean drag, and possibly #iieanean lift (Miliou
et al, 2007), component, which potentially giveserto a new SCR
equilibrium, is here omitted as we focus on thetflating component.

Lift Coefficient for Cross-Flow VIV
The wake oscillatoQ(s,t) of Skop and Balasubramanian (1997) has
been developed by particularly focusing on the sftsv VIV. It

copes well with damped and lightly-damped systéBased on the van
der Pol oscillatorC, (s,;t) andQ(s,t) are originally represented by

C(sy= Q(Sﬁ X(s) (7)
Qs -G - 4QZ(S))QS)t+w2Q,s)t—w (.9 ®)

whereyis a so-calledtall parameter (Triantafyllou et al, 1994), is a



local displacement normal to the ris€, is the lift coefficient for a
stationary cylinder, and a dot denotes differeidiatwith respect to
time. To describe the two displacement componehtSGR in-plane
motion, we lelQy = -QsindandQy = Qcosd, thereby giving rise to
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Clearly, Egs. 4 and 9 (5 and 10) are dependentotim@y and u (Qy
andv ), exhibiting the two-way feedback coupled systdnthe wake-
riser interaction. Note that, in place of Egs. 9 at0, Eq. 8 is
considered for a straight vertical riser or horizbrpipe. Overall, the
empirical wake coefficients are obtained by matghand interpolating
a series of experimental data from many researohpgr (Skop and
Balasubramanian, 1997), and they are dependeriteomass-damping
(so-called Skop-Griffin) parameter; S &y, in which £is the modal
damping in water ang is the mass ratio given by

pD?

K= gest(m+ m) (11)

Drag Coefficient for In-Line VIV

Very few theoretical studies have proposed a wakdlator governing
the drag coefficient, and a practical tool for pcddg the in-line VIV
is still unavailable in industry. It is well knowfrom many experiments
(e.g., Okajima et al, 2004) that the in-line VIV yntake place in a
reduced velocity range lower than that of crose+fl¥/IV with
symmetric/alternate vortices. In addition, it maye place in the same
reduced velocity range as cross-flow VIV with afi&te vortices.
Typically, the in-line VIV has a frequency twiceattof cross-flow VIV
during a 2-D lock-in. This entails that both outgténe and in-plane
modes, whose natural frequencies are in nearlydtuié ratio, are
simultaneously excited. Based on this evidence emtsidering the
practical case of alternate vortices, we herezatilby following Currie
and Turnbull (1987), Kim and Perkins (2002),

Co(s)=P(s o R s)=2L 1f s) (12)

P(st) -2 H(C-4P(s)) K sk+ 42 B s)t= 20, Iw § (13)

where P is the in-line wake componentd and J are empirical
coefficients, andCp is the drag coefficient of the stationary cylinder

Natural Frequencies’M odes with Bending-Tension Effect
Natural frequencies and mode shapes of pinned-gig@ERs (as well
as TTRs) are determined by a hybrid analytical-micaksolution. By
consideringx as an independent variable, from Eq. (1), thealine

equations of undamped free in-planey) and out-of-planew) motion
are expressed, in dimensionless form, as
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wherex = (1+/9)Y2, a = EA/T,, b? = El/(m+m,)D?, ¢ = Ty/(m+my,)D2
In-plane and out-of-plane modes are postulatedsden a Fourier sine
series satisfying the boundary conditions, in threnf

U ()= 2N, (t)sin(nZXD]

n=1 H

Y]

where, ford = 1-3,U* =u, U2 =v, U* =w, Y are generalized time
coordinatesN is number of convergent sine functions. By substiy
Eq. 17 into Egs. 14-16 and applying the Galerkirthoé, the eigen-
problem is solved in the same manner as in Srindl €2007). Note
that, for a pinned-pinned TTR with uniform tensiamd bending, both
frequencies and modal shapes can be alternatibélined via closed-
form formulae, and botk" in-plane/out-of-plane modes are similar to
taut-string (sine-based) modes. However, this tstine case for SCRs
whose in-plane modes are significantly dependentinitial sagged
configurations, and indeed they are neither pusglymetric nor anti-
symmetric modes due to the effect of catenaryria¢ion.

Natural Frequency Spectrum for Riser

It is worth constructing a spectrum of natural tregcies (in still water)
to understand the global picture of in-plane/ouplaine frequency
relationships when varying some key parametershefriser system.
This is useful in view of detecting the potentidMnodes. Due to the
combined effect of bending, extensibility (tensi@md geometry (sag/
inclination), two meaningful non-dimesional paraerstare introduced,

(18)
(19)

A? =(W, Lcosd,)* EA I T
A=LJT /El

wherelL is riser equilibrium length and, is the tension at maximum
sag. The paramete¥ is a so-called cable parameter (Srinil and Rega,
2007a) describing the elasto-geometry effect, wdsdeis a so-called
tensioned-beam parameter describing how the fléxisraall A) or
axial (largeA) rigidity plays a dominant role. By normalizingetisCR
frequencies ¢) by the lowest frequency of the corresponding TTR
(), the frequency spectrum wittcor vs. A is illustrated in Fig. 2,
where solid (dotted) lines denote in-plane (ouplaire) modes.
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Fig. 2 Natural frequency spectrum for risers widinyingA



In Fig. 2, whereT, (L) is varied,A > 560 represents the case of TTRs
(1> 0, asWe effect becomes negligible with respectTy) whosek"
in-plane/out-of-plane frequencies are equal. Howexvelecrement ih
reflects the case of SCRs whos® in-plane/out-of-plane frequency
ratio is changeable. In some cases, the computddxviyrequencyaw
(for a givenV) entails the potentially in-line/cross-flow VIV rdes
having a 2:1 frequency ratio, as exemplified by thecles
corresponding to the"6out-of-plane/?® in-plane modes foA ~ 272
(vertical dashed line). When further increasih@thusa) for such4, it

is also possible that two higher-ordef"(&nd 6" in-plane modes —
whose frequencies are nearly equal at a so-caleiiance region
(Srinil and Rega, 2007a) — may be simultaneousbited. This may
result in a multi-mode lock-in of cross-flow VIV @er et al, 1997).
Yet, our attention is placed on the uni-modal latlbehavior observed
through a reduced-order model derived in the falhgw

REDUCED-ORDER MODEL FOR UNI-MODAL VIV

To the aim of minimizing the computational time ceff a reduced-
order model describing the hydrodynamic-elastiéncldr interaction is

now developed, by assuming that both the fluid {iake) and the riser
dynamically displace in a similar fashion havingestain spatial shape
profile corresponding to a potentially vortex-inédcmode. This is
plausible (see, e.g., Skop and Griffin, 1975; Kimd &erkins, 2002)
because the flow is uniform and its direction ispeadicular to the
SCR in-plane curvature, giving rise to a single tewr shedding

frequency. Moreover, based on the fact that the Vidplitude is

relatively small (Sarpkaya 2004), the contributidram higher-order

modes through structural nonlinearities may be igdadé (Srinil and

Rega, 2007b). The first-order (state-space) diffeméforms of Egs. 1,
9, 10 and 13 are considered, and the expansionspfadement and
velocity (A, B;) variables, based on vortex-excited modes, isrgbse

For structure:

u=A- u=fa., A= 0¥,

V=A - v=1fd,. A=Dpd, (20)
wW=A - w=hJ{,, A=q,

For fluid:

Q=B - Q=dg. B=sp,

Q=B - Q=d#, B=sed, (21)
P=B- P=2z{,., B=¢g,

whereg, and ¢, represent the horizontal and vertical componemt’f
in-plane (cross-flow VIV) modal shape functiofi, represents tha™
out-of-plane (in-line VIV) modal shape functiofy, (d.), pm (€n), hy
(z,), anddq, (0,) are the corresponding generalized coordinatessef
(wake) to be determined. By substituting Eqgs. 2@ 2hinto Egs. 1, 9,
10 and 13, applying the Galerkin method with retevhoundary
conditions and orthonormalization of modal shapesgt of nonlinearly
coupled equations, governing the riser-wake intemcand fulfilling
the 2-D lock-in =~ 2a, = 2a) condition, is expressed as
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where modal shape-based quadratic/cubic nonlireficients are
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It can be proved tha¥ =29  and A =Y .. When considering a

straight riser (or horizontal cable) involving amiesymmetric mode in
the VIV, some of the above coefficients are trivdake to the nonlinear
orthogonality of modal functions (Srinil and Re@807a). Depending
on initial conditions, empirical coefficients angstem parameters, Eqs.
22-29 are simultaneously solved by numerical irgggns with a
proper time stepping. To perform a series of patamstudies, it is
worth making a reference to a reduced flow velopayameter, i.e.

== (37)
w,D Sto
whered = wy/a, being a reduced angular frequency of the risereH
D is fixed, wheread), is varied through the first or second relationship
in Eq. 37. In the first relation, the flow veloci¥is varied whereas, in
the second relation, the vortex frequerayor the in-plane (or cross-
flow) frequencya, is varied throughy, while keepingV (Re) fixed.
Typically, for convenience in the experiments, ¥es increased or
decreased, while keeping other properties of thedecylinder fixed.
Yet, for flexible cylinders such as marine riséhg system frequencies
(i, ap) are closely spaced (e.g., Fig. 2) and, when agnguchV,
different potential modes may be excited accordinghe updated
shedding frequencyy. Moreover, due to the associated variation of Re,
the assumption of sub-critical flow, i.e. Re < 2§<1Williamson, 1996),
in making use of the wake oscillator might not tadid’ when further
increasingV. To circumvent this, theV (Re) may be fixed by
parametrically varyingu, or . If a, is varied, the so-calletlue, in-
situ or oscillation frequency is realized ag,+ g, wheregis a cross-
flow frequency detuning parameter. This variatioh practically
reasonable since the structural natural frequeneing VIV is indeed



modulated due to the varying added mass coeffidiBigvin, 1990;
Vandiver, 1993). Alternatively, by keeping, fixed, ca may be varied
througha + & whereeis a vortex frequency detuning parameter, since
the vortex frequency of oscillating cylinder may diéerent from that

of stationary cylinder given by Strouhal law. Thariation of out-of-
plane (or in-line VIV) frequencyy, can be made in the same manner.
When obtaining the steady-state solution of Eqs222the temporally
and spatially maximum amplitude&/D) due to cross-flow/in-line VIV
can be deduced from the time histories in conjonatiith Eq. 20.

PARAMETRIC INVESTIGATIONS

By way of examples, we consider the SCR withe .384 m, aspect
ratio (L/D) = 2581,8 = 3C°, a~ 1669,b? ~ 8112715¢%~ 77784 M 7=
6,A = 272 (Fig. 2). The fluid-structure parameters @are0.044, g, =
Sen = 0.227 (both in-plane/out-of-plane modal dampfirgl %),C o =

0.28, Cpp = 0.20, y~ 0.183, F ~ 0.6437 andG ~ 0.4895. Because
analytical formulae for estimating the empiricabgrcoefficients are

unavailable in literature, we assurde= F andH =G .
Nonlinear Dynamic Responses of Riser and Fluid Wake

For givenV = 0.34 m/s, the computedi ~ 1.112 rad/s and the potential
cross-flow (in-line) VIV mode corresponds to tH¥ B-plane (8' out-
of-plane) mode (Fig. 2) withw, = 1.033 @, = 2.207) rad/s. The
associated normalized in-plan@g) and out-of-planed) modal shape
functions projected onto the X-axis are displayeéig. 3 with 40 sine-
based functions. These nearly-symmetric (4a) atidsgmmetric (4b)
modes are considered for uni-modal cross-flowfie-IVIV, and they
are fixed (unless stated otherwise) in the follayyrarametric studies.
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Fig. 4 Cross-flow (solid line) and in-line (dasHate) responses

A comparison of cross-flowf{) and in-line f,) steady-state responses
due to VIV is displayed in Fig. 4 with), = 5.385. It can be seen that
the dynamic responses are perfectly periodic, asfge'limit cycles”,
with cross-flow amplitudes being greater than meliamplitudes
(Sarpkaya, 2004). The corresponding frequenciesnaagly tuned in
2:1 ratio, and there is a clear phase different¢e/d®n cross-flow and
in-line VIV, depending on assigned initial condit®
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Fig. 5 (a) Cross-flow (solid line) and lift forcddtted line) responses;
(b) In-line (dashed line) and drag force (dottee)iresponses

A comparison of riser and associated fluid forcgpomses is displayed
in Fig. 5a (cross-flow VIV) and 5b (in-line VIV). Aslight phase
difference between wake and riser responses oaooirs apparently in
cross-flow VIV. In any case, the wake displacenmmarametersd;,z,)
have greater amplitudes than the riser displacepammetersf,h,).
This holds also for the associated velocity paramei{not shown
herein), i.e. €,0,) vs. Pmq.). Overall, Figs. 4 and 5 highlight the
feature of uni-modal wake-riser interaction invalyia single response
frequency and self-limiting steady response.

Uni-M odal L ock-In Phenomenon

The fundamental lock-in or synchronization phenoomenf SCR in
which the uni-modal cross-flow and in-line VIV occaver a wide
range of the reduced flow velocity, is now highlighted, along with
the predicted maximum response amplitudlés. As aforesaid through
Eq. 37,U, can be varied by directly varying eith¥r a or a, (@),
which, in turn, parametrically affects Eqs. 22-Fr the sake of
comparison, the results with varying and system frequencies are
presented in Figs. 6 and 8, respectively.

Varying Flow Velocity

In Fig. 6, the flow speed is either increased wreased in the range
0.1 <V< 0.6 m/s£ 3.2x10 < Re < 1.9 x18) with a small increment of
0.01 m/s. Both cross-flow/in-line VIV amplitudeseacomparatively
plotted vs.U,. It can be seen that a large-amplitédP variation due to
cross-flow (in-line) VIV occurs in between 4 < 7 (5 <U, < 6),
with the discontinuity of two response branches ngwio a jump
phenomenon or hysteresis effect. This highlightse tlock-in
phenomenon whereby the riser and the fluid arentermally-resonant
condition, with the vortex shedding frequency lozkiinto the riser
oscillation frequency (Sumer and Fredsoe, 1999)eMimcreasing or
decreasing/, overall riser responses are coincident: the sudid@p-
down and jump-up criticdl, values are nearly the same, and the bent-
to-right response diagram exhibits a hardeningineatity due to the
predominant cubic-type restoring forces. The greatesponse
amplitudes — as well as the broader regime of lack-correspond to
the cross-flow VIV giving rise to the maximu®/D =~ 1.634, in
comparison with maximurA/D = .544 due to in-line VIV. These occur

albeit assuming equal empirical propertiesX F , H =G) for cross-
flow and in-line VIV. Overall, the presented thetiral wake-riser



interaction model provides good qualitative agresnvath theoretical
and experimental literature of cross-flow/in-lindW in view of the
maximum attainable amplitudes (up A =~ 2 for flexible cylinders)
and the uni-modal lock-in prediction (Blevin, 19%8arpkaya, 2004).
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Fig. 7 Comparison of cross-flow VIV with (solid &) and without
(dashed line) geometrical nonlinearities

The effect of SCR geometrical nonlinearities onghediction of cross-
flow VIV is now highlighted in Fig. 7, wittb = .6 m,A = 90 and the
excited ¥ in-plane mode. The dynamic responsesf.pfare plotted
corresponding to th&), at maximumA/D during the lock-in when
increasingV. By considering either linear or nonlinear equagiomf
riser motion (Eqgs. 22-25), the comparison revealsnaiiceable
amplitude and phase difference although both stetatg time
histories are based on the same assigned initiaitbons. In turn, there
is a difference in the relative phase between rigrand wake d,)
motion. The predicted maximui/D is about 1.22 (1.48) by linear
(nonlinear) model. To circumvent such discrepandies geometrical
nonlinearities — which indeed play a crucial rakeevaluating a new
riser equilibrium caused by mean drag — shoulddoeunted for.

Varying System Frequencies

Considering now the fixeet = 0.35 m/s and with this flow speed the
potential vortex-excited modes are the same aggin3k-By varyinga

or ay, (a) through the corresponding frequency detuningpatar ¢

or & within the range of [-0.8, 0.8], similar respongégrams
exhibiting the lock-in phenomenon are obtainedigsF8a (cross-flow
VIV) and 8b (in-line VIV). The in-line vibration sponse and the

associated lock-in bandwidth (Fig. 8b) seem to beensensitive to the
frequency variation. Yet, overall achievable amygl#s when varying
@ or ay, (w) are comparable, being approximately equal toehos
predicted in Fig. 6 for the varyirg case. This similarity of Figs. 6 and
8 may be attributed to that lock-in @7) occurs in the range about
1.3 >wfw > 0.7 (2.2 >w/aw, > 1.7) for cross-flow (in-line) VIV,
rather than being ath/a =1 (a/w = 2) orU, = 5 for stationary riser.
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Fig. 8 Maximum response amplitudes due to (a) eflossand (b) in-
line VIV with varying a (filled symbols),a, anda, (open symbols)

VIV of SCRvs. TTR

A comparison of VIV responses between SCR and TaRng the
same flexural tensioned-beam paraméter272 is now highlighted in
Fig. 9 with the case of increasiig From Fig. 2, the potentially excited
modes for TTR correspond to the third cross-flaw, & 1.095 rad/s)
and sixth in-line &, = 2.194 rad/s) modes, whose shapes are perfectly
symmetric and anti-symmetric with respect to midsj@n with three
and six half-sine waves, respectively.
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Fig. 9 Maximum response amplitudes due to (a) eflogssand (b) in-
line VIV: SCR (filled symbols), TTR (open symbols)

Based on the same given parameters, empiricalicieeffs and initial
conditions, the response comparison in Fig. 9aligigts that the cross-
flow VIV of TTR entails smalletA/D (= 1) with respect to the cross-
flow VIV of SCR. The lock-in ranges and corresporgliresponse
jumps appear similar. Such amplitude differencetisibuted to the
effect of riser geometry because TTR (SCR) has feoo-zero) sag
and has one (two) displacement component in thesdtow VIV. The
cross-flow amplitudes of TTR tend to be comparatiethose of
straight spring-mounted cylinders reported in thierdture. On the
contrary, the in-line VIV amplitudes for both TTR&SCR in Fig. 9b
are nearly comparable. Again, this is physicalgsmnable because the
in-line modes of SCR and TTR are the same sixther{&ig. 3b) and
the in-line VIV of SCR subject to flow normal toettturvature plane is
not significantly affected by the riser curvaturesag.



Influence of Vortex-Excited M odes

It is interesting to understand how the vortex-ctimodes having
different spatial shapes affect the VIV respon§es.a givenA =~ 272
(see Fig. 2), the cross-flow and in-line VIV modekose frequency
values are in 1:2 ratio are th& @, 3¢, 4" ...) in-plane and @ (6",
8" 1d",...) out-of-plane modes, respectively. Note thae thuthe SCR
in-plane configuration, the spatial shape profiesdd (£, 3% or even
(2", 4™ in-plane modes are not perfectly anti-symmetrisymmetric
(e.g., Fig. 3a), whereas the spatial shape profifesven out-of-plane
modes are perfectly anti-symmetric (e.g., Fig. 38ith the same given
parameters and empirical coefficients, the analgbisck-in regime is
performed in the case of increasi¥igand the maximur&/D results
are compared in Table 1 for different potentialkgieed modes.

Table 1. A comparison of predicted maxim&/ for different excited
VIV modes of SCR sample

Crossl-\jllgéve:s In-line |~ ss-flowaAD In-line A/D
1:4 1.043 0.518
2:6 1.634 0.544
3:8 1.142 0.564
4:10 1.768 0.599

It can be seen that the in-lidéD amplitude tends to slightly increase
with the corresponding mode order. This is in casttito the case of
cross-flow VIV, where different excited in-plane des entail different
maximum A/D, depending on the horizontal/vertical shape famsti
affecting overall coefficients in Eqs 22-29. Agaisiich difference
between cross-flow/in-line VIV is due to the infhge of initial sag or
curvature of SCR on the in-plane vibration. Thene(®®, 4") modes
seem to be the most dangerous case for this BGR{2) example.

I nfluence of Tensioned-Beam Parameter (Sag/I nclination)

In practical design, the inclinations and sags GRS are variable,
depending on the geometry (e.g., water depth, tioté offset, seabed-
free length) and the stiffness (e.g., bending axidl aigidity). This
influences the beam-cable behaviour of risers. Ppreciate the
combined effect of riser sag and inclination on W&/, we now
consider three SCRs having different values of walepth Y, or
inclination angleg. With given a ~ 1669, these SCRs have different
sag-to-span values and tensioned-beam paramAderisof the sake of
comparison, the™ in-plane (cross-flow) and"6out-of-plane (in-line)
modes are fixed in the VIV analysis of each SCRthificreasingV,
the predicted maximum¥/D amplitudes during cross-flow and in-line
lock-in are comparatively reported in Table 2.

Table 2. A comparison of predicted maximd/d for different flexible
inclined sagged SCRs

g(deg.)| A Sag/span| Cross-flowA/D In-line A/D
30 272 0.08 1.634 0.544
45 367 0.10 1.836 0.574
60 615 0.14 1.911 0.624

It can be seen that both maximum cross-flow antinm-amplitudes
increase with increasing, increasingg and increasing sag-to-span
ratio. This highlights that, when the cable behayiogherA) prevails

over the beam behavior (lowéy), the VIV of SCR becomes more
critical. This is physically reasonable becausectide-like (larger sag)

SCR is more slender and flexible than the beam{likeer sag) SCR,

potentially leading to larger vortex-induced dig@ments. This

prediction is meaningful as deepwater SCRs terizbl@ave like marine

cables according to the increasing aspect raticsagd

Influence of M ass-Damping Parameter

The mass-damping parameter (e.g) @ays a very significant role in
the VIV analysis and prediction (Sarpkaya, 2004%abese it affects
empirical coefficients, vortex-shedding modes (W&itison and
Roshko, 1988) and overall VIV response behaviossaAnatter of fact,
many experimental VIV studies of elastically-mouhtegid or long
flexible cylinders subject to normal flow dependtbe measured mass
and damping values. Therefore, it is worth makingoanparison of
analysis results with a series of experimental .dmtahis study, we
compare the predicted maximum amplitudes during-loc(Ay./D)
with those gathered by Skop and Balasubramania@7jl1@s shown in
Fig. 10 which is the so-called Griffin plot (Williason and Govardhan,
2004). ThreeSg values (.068, .227, 1.133) are considered for both
SCRs @ = 3() and corresponding TTRs, and results of tHg8CRs)
and 3 (TTRs) cross-flow VIV modes are displayed.
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Fig. 10 A comparison of predicted cross-flow VIV gitudes of SCRs

and TTRs (crossed squares) with experimental datpring-mounted

cylinders, pivoted cylinders, cantilevers and tzaliles (filled circles),
solid line denotes least-squares fit of experinmafata

Overall, the maximum cross-flow amplitudes of b&BRs and TTRs
decrease with increasing.SThis is true if the structural damping or the
structural mass increases (see, e.g., Khalak afichigon, 1999). It is
also worth mentioning that the corresponding ie-lMIV response
significantly decreases ag $icreases and it possibly disappears when
further increasing & For TTRs, the predicted\,/D amplitudes
provide good qualitative, and possibly quantitatiegreement with
experimental,,,/D amplitudes. For instance, Moe and Overvik (1982)
considered a riser based on an elastically-moungéticylinder model
and reported that, forgS= 0.23, A,,/D = 2.18, whereas our study
predicts that, for §= 0.227, 2,,/D = 2.17. For SCRs, the inclined
flexible cylinders with sags tend to have greaigk,/D than straight
cylinders such as TTRs, pivoted tubes, cantileeerut cables. This
prediction needs further experimental confirmati@sed on real SCR
vs. TTR measurement data, with the same contr&igoarameters and
environmental flow conditions.



CONCLUSIONS

A computationally-efficient reduced-order model etésing the fluid-

catenary riser interaction due to VIV has been kpesl. The riser
model is based on nonlinear equations of 3-D motibra pinned-
pinned beam-cable subject to a steady uniform otrflew whose
direction is perpendicular to the riser plane oftiah equilibrium

curvature. The hydrodynamic model is based on éoently-refined
nonlinear wake oscillators describing the fluctgtiift/drag forces
corresponding to cross-flow/in-line VIV. Overallfets of bending,
extensibility, sag, inclination and in-plane/outgéne modal coupling
are fully taken into account.

A series of parametric studies have been carri¢ypumaking use of
direct numerical time integrations, which entailnfioear dynamic
responses of marine riser coupled with fluid wakie spatially and
temporally maximum amplitudes due to cross-flowiire VIV of
risers are predicted, depending on the vortex-estcibh-plane/out-of-
plane modes. Results highlight the uni-modal latkshenomenon
when varying the reduced flow velocity parametdéong with some
fundamental features of VIV. The comparative analysf catenary
risers and corresponding straight top-tensionedrgidias also been
performed. Depending on modal shape functions,idead-beam
(sag/inclination) and system mass-damping parasieterd estimated
empirical coefficients, the predicted maximum amoples due to cross-
flow (in-line) VIV of catenary risers are greatehah (nearly
comparable to) those of straight risers, due toitfleence of initial
curvatures of catenary risers. With respect todtoss-flow VIV, the
riser amplitude results provide good qualitativereagnent with
experimental data of rigid/flexible cylinders inetfiterature. In some
cases, the effect of riser geometric nonlinearisggronounced.

Due to the capability of predicting the uni-modatk-in regime and
the associated maximum amplitudes due to crosdifidime VIV, the
presented reduced-order hydrodynamics-riser inieracnodel and
analysis may be extended to account for the cabesutii vortex-
excited modes, which are theoretically and pralfyicaeaningful when
the flow is aligned with the catenary riser plafiewarvature and/or the
flow is spatially sheared. Moreover, the associatdestelopment of
finite element-based modeling, in conjunction whk improvement of
nonlinear wake oscillators based on the computatifinid dynamics,
looks very promising.
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