Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

On the blockade of acetylcholine release at mouse motor nerve terminals by beta-bungarotoxin and crotoxin

Rowan, E.G. and Pemberton, K.E. and Harvey, Alan L. (1990) On the blockade of acetylcholine release at mouse motor nerve terminals by beta-bungarotoxin and crotoxin. British Journal of Pharmacology, 100 (2). pp. 301-304. ISSN 1476-5381

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

1. beta-Bungarotoxin and crotoxin are phospholipose A2 neurotoxins, which block irreversibly the evoked release of acetylcholine from motor nerve terminals of mouse triangularis sterni preparations. 2. Extracellular recording of nerve terminal action potentials reveal that inhibition of transmitter release is not associated with failure of the action potential to invade nerve terminals. 3. When evoked transmitter release (measured as intracellularly recorded endplate potentials) was blocked by beta-bungarotoxin, spontaneous acetylcholine release was stimulated as in control experiments by K(+)-induced depolarization and by the Ca2(+)-ionophore A23187. 4. The site of action of the toxins remains to be elucidated but would appear to be associated with the coupling of action potential induced-depolarization to the release mechanism, rather than with the release mechanism itself.