Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Microwave generation from an electron horseshoe distribution: theory and experiment

Ronald, K. and Phelps, A.D.R. and Bingham, R. and Speirs, David and Cross, A.W. and Vorgul, I. and Cairns, R.A. and Kellett, B.J. and Whyte, C.G. and Robertson, Craig (2006) Microwave generation from an electron horseshoe distribution: theory and experiment. In: High Energy Density and High Power RF. American Institute of Physics Conference Proceedings, 807 . American Institute of Physics, Melville, N.Y, USA, pp. 246-251. ISBN 0735402981

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

When a beam of electrons encounters an increasing magnetic field along its vector of motion, conservation of the magnetic moment results in the formation of a crescent or horseshoe-shaped velocity distribution. A scenario analogous to this occurs in the terrestrial auroral zone where particles are accelerated into the polar regions of the earth's magnetic dipole and expand adiabatically in velocity space. The resultant horseshoe-shaped velocity distribution has been shown to be unstable to a cyclotron-maser type instability [1-3]. This instability has been postulated as the mechanism responsible for auroral kilometric radiation and also nonthermal radiation from other astrophysical bodies [4]. In this paper we describe both theory, simulations and a laboratory experiment to investigate the generation of microwave radiation when an electron beam is magnetically compressed by a factor of 35.