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Abstract 

Recent developments in technology permit detailed descriptions of system performance to be 

collected and stored.  Consequently, more data are available about the occurrence, or non-

occurrence, of events across a range of classes through time.  Typically this implies that 

reliability analysis has more information about the exposure history of a system within 

different classes of events.  For highly reliable systems, there may be relatively few failure 

events.  Thus there is a need to develop statistical inference to support reliability estimation 

when there is a low ratio of failures relative to event classes. In this paper we aim to show 

how empirical Bayes methods can be used to estimate a multivariate reliability function for a 

system by modelling the vector of times to realise each failure root cause. 

 

1. Introduction 

The motivation for this research is based on experience of modelling system reliability in 

collaboration with the UK aerospace industry.  The focus of our work has focussed upon 

reliability assessment within new product development.  A modelling framework has been 

developed to provide decision support about reliability decisions during system design and 

development (Walls, Quigley and Marshall, 2006).   

Our premise is that the initial design specification will be informed by information from the 

performance of heritage systems.  This is the case for the evolutionary design processes 

common in the aerospace industry. For example, changes to an existing design may be in 

response to a weakness experienced in an earlier generation of the system, or may be 

motivated by the need to develop improved functionality through, for example, technological 

innovation. For an evolutionary design process, the demand for change may constitute a mix 

of reactive and proactive motivations and hence reliability modelling will be informed by 

information from the in-service histories of operational systems as well as knowledge about 

the likely impact of innovation on the new design. During the development phase, additional 

decisions will be made to change the design in terms of, for example, component and 

materials selection, board layout, manufacturing process, and maintenance policy.   Thus the 

model needs to capture the engineering design knowledge as well as relevant event history 

data about potential faults, often referred to as concerns, within the new design that may 

result in reliability problems in service if not removed or the effects mitigated. 

A key characteristic of our model is the de-coupling of the engineering concern, which may 

or may not be realised as a fault, and the conditional distribution of the time until realisation 

of the concern assuming it to be a fault within the design.  The former is inferred from expert 

elicitation processes to obtain prior probability distributions, while the latter is inferred from 

data for heritage systems that are similar in design or expected environmental exposure.  

Within the modelling process we map each engineering concern to a root cause, which 

describes the characteristics of the failure should it occur.  As such we require a probability 
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distribution for each class of root cause.  Typically there are many classes and few events.  

Fully Bayesian approaches to such a problem would require engineers to assess, not only the 

likelihood of an identified concern being realised, but also the time until it will be realised in 

operational age.  Our experience has shown the elicitation of such times to be problematic, 

with engineering experts being vague or uncomfortable making such assessments.  This is 

partly due to the way in-service performance data is fed back to the design engineer. 

Here we explore an empirical based solution to this problem.  An empirical Bayes based 

methodology provides a sound basis for constructing conditional distribution functions for 

each root cause.  Broadly, this method initially assesses a distribution for the time to failure 

for all causes by pooling all data and subsequently assessing a covariance structure between 

root causes to permit adjustments from the pool for each specific root cause.  This leads to 

each root cause having a unique distribution function.  The covariance structure is obtained 

by constructing what could be considered empirical prior distributions, which are updated in 

the usual Bayesian manner to adapt to the specific root cause. 

Specifically, we use a multinomial distribution to capture the sampling variability, where for 

each root cause is partitioned into time into intervals with each interval assigned a parameter 

to measure the likelihood that should such a fault exist within a design then it would be 

realised in that time interval.  The set of probabilities for any root cause are constrained to lie 

within a simplex.  The Dirichlet distribution is regarded as a convenient generic prior for the 

vector of probabilities within each root cause.  Moreover, we assume that the vectors of 

probabilities across root causes are independent and identically distributed from a Dirichlet 

distribution.   Thus the number of events realised for a specific root cause are conditionally 

independent in relation to another root cause.  Taking the expectation of the multinomial 

distribution with respect to the Dirichlet measure provides a probability measure for each root 

cause which is independent and identically distributed.  Using this distributional form a 

likelihood function is constructed from which parameter estimates and confidence intervals 

can be constructed for the Dirichlet prior distribution.  For each root cause a posterior 

distribution is obtained by updating the empirically estimated prior in the usual Bayesian 

manner. 

An illustrative example based on an industrial case is described.  We explore the proposed 

method for constructing the reliability functions for each root cause and combining this with 

the expert judgement describing the engineering concerns.  We discuss appropriate reliability 

statistics and demonstrate the usual decision support. Finally we reflect on the proposed 

methodology by examining issues concerning the classification of failures and the impact on 

assessing the system reliability and we discuss the problems concerning the double counting 

of data with respect to point and interval estimates.  We consider the proposal from a 

practical perspective, with reference to cognitive limitations of experts in providing fully 

specified prior distributions and the need for empirically based solutions, at least in part.  

2. The Model 

The application of Empirical Bayes (EB) within the context of risk or reliability is not new:  

Martz and Waller (1991) discuss the technique generally; Vesely  et al (1994) discuss an 

application to emergency diesel generators for binary data; Vaurio (2002, 2005)  use EB for 

estimating the rate of common cause failures; Ferdous et al (1995) use EB to support 

inference for the Weibull distribution within a software reliability growth context; Grabski 

and Sarhan (1996) combine spline density estimates for prior distributions with Empirical 

Bayes for inference with the exponential distribution; Vaurio and Jankala (2006) use EB 
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within a Poisson modelling framework; Sohn (1999) makes use of the methodology with 

response surface modelling of categorical quality characteristics of possible designs; Quigley 

et al (2007) use it to model the rate of occurrence of railway accidents; and Bedford et al 

(2006) use it to estimate probability within a fault tree model.          

We develop a model for the time to failure of an item, where we assume that an item fails due 

to the realisation of an engineering concern.  Should a concern be realised, it is considered a 

fault.  Each concern is classified a priori into a mutually exclusive and exhaustive set of root 

causes.  The operational times experienced until realisation of a fault are assumed to be 

statistically independent.  The operational times until realisation of a fault within a root cause 

class are assumed identically distributed.     

We denote the number of root cause classes by J.  The operational time to realisation of faults 

is partitioned into I mutually exclusive and exhaustive partitions.  It is assumed that there are 

Nj faults in the design associated with root cause class j.  We seek a prior distribution on the 

IxJ matrix, denoted by P, whose (i,j) element is the probability that a fault associated with 

root cause class j will be realised in time period i, which is denoted by pij. 

Therefore, we can express the probability that an item will not fail by time t0 conditioned on 

the matrix P and the vector 
1

~
( ,..., )JN N N as: 
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Inference for the model is supported through historical data analysis on similar items and 

through expert engineering judgment. The expert judgement is to construct prior distributions 

for the vector 
~
N through eliciting engineering concerns and assessing the likelihood each will 

be realised as a fault in operation.   

3. Inference 

We assume failure event data are available from similar designs.  Denote the number of faults 

that were realised in time period i for root cause j as mij and denote M as the corresponding 

matrix of data.  We obtain the following likelihood function for root cause j, which is a 

function of the vector 1
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It is assumed that the multinomial distribution can be used to represent the number of times to 

first realise a fault within a design that will be classified as root cause j. 

The Empirical Bayes (EB) methodology will be applied by assuming that prior to witnessing 

any data, the prior distribution for the vector 
~

jP is exchangeable for all j.  Specifically, we 

assume the prior distribution to be the following Dirichlet distribution: 
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We apply the Dirichlet prior distribution (3) and take the expectation of 
~

jP with (2) for the j
th

 

root cause and obtain a new Likelihood function which is a function of the parameters in the 

prior distribution: 
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As the distribution of the number of faults exposed by root cause is exchangeable, the 

likelihood function for the data becomes the following: 
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We then seek the Maximum Likelihood Estimate (ML) of ia  for all i using (5) which we 

denote by
^

ia .    

3.1 Posterior and Predictive Distribution 

Since the posterior distribution is unique for each root cause class we use the subscript j.  

However since each class belongs to the Dirichlet family of distributions, we substitute the 

estimates 
^

ia into the posterior to obtain the following: 
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The model describing the aleatory uncertainty within any root cause class is the multinomial 

distribution.  Taking the expectation of a generic multinomial distribution with respect to the 

posterior distribution (6) to obtain a predictive distribution for the j
th

 root cause gives: 
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This can be represented as: 
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3.2 Combining Expert Judgement 

Assume the prior distribution describing the number of faults within each root cause, denoted 

by  . .Pr j jN n
 
has been fully specified by an expert.  Taking the expectation of (7) with 

respect to this prior gives a predictive distribution unconditional of the number of faults 

within the design.  Care must be taken as there are restriction on the number of realisations 

within any time interval as they are constrained to sum to 
. jn .  We evaluate the probability 

that the item fails for the first time due to a fault within root cause class j after time t0 

assuming three different parametric forms: the Binomial distribution as an example of low 

dispersion; the Poisson for medium dispersion; and the Negative Binomial for large 

dispersion. To evaluate the probability the item fails after time t0 we multiply the 

probabilities for each root cause class.  Note that as t0 tends to infinity for each of these 

classes, the probability of item survival tends to the probability that no faults are in the 

design.  To present a succinct closed form expression of the probability that the item fails for 

the first time due to a fault within root cause class j after time t0 we provide first order 

approximations. 

Binomial Prior Distribution 

Assume the expert has specified a Binomial prior distribution for the number of faults that 

will be realised as root cause j.  We express this prior as: 

   1 , 0, 0,1,...,
jj

nn

j j j j j j

j

k
P N n q q q n k

n

 
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       (9) 

Using (1) we consider the expectation with respect to Nj  to obtain the probability conditional 

on the parameters P: 
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From previous results, it is known that the posterior distribution for Pj is has a Dirichlet 

distribution. We are interested in the distribution of the convolution of pij which has a Beta 

distribution.   Taking the expectation of (10) results in the following: 
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This expression can be approximated by substituting the mean of the convolution of the 

probabilities directly into the expression for the expectation to give:  
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The formula in (11) has an intuitive appeal.  The ratio 
0 ^ ^

1 1

t I

i ij i ij

i i

a m a m
 

    is the MLE of 

the probability a fault will be realised before or during time t0 and 
jq is the probability a 

concern will be realised as a fault.  Thus the product is the probability a concern will be 

realised as a fault within the first t0 time periods.  As there are k concerns assumed within a 

design, the expression provides an estimate of the probability that all k concerns are realised 

after time t0. 

Poisson Prior Distribution 

We consider evaluating the probability the item fails for the first time due to a root cause j 

fault after time t0 assuming the expert has provided a Poisson prior distribution with mean 

j given P: 



 7 

 
0

0

1

0

1

1

j

j

t

j ij

i

N
t

j N ij

i

p

P T t E p

e








  
    
   




P

       (12)

 

As with the Binomial example, we approximate the expectation of (12) by substituting the 

mean of the convolution of pij’s: 
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The probability of a fault being realised within the first t0 time periods is expressed by the 

exponent of the exponential function, i.e. 
0 ^ ^

1 1

t I
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a m a m
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    and it is multiplied by the 

expected number of faults within the design providing the expected number of faults realised 

within the first t0  time periods.  As such, the resulting formula is quite intuitive.  

 

Negative Binomial Distribution 

The Negative Binomial distribution can be obtained through mixing a Poisson distribution 

with a Gamma distribution (Greenwood and Yule (1920) as cited in Johnson et al (1993)), as 

the following demonstrates: 
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To obtain an approximation of the probability the item will not fail within the first t0 time 

periods due to root cause j, we treat 
j in (13) as though it were a Gamma random variable 

and take the expectation.  

 



 8 

 

0 ^

1

^

1

0

0

^

1

^

1

t

i ij

i
j I

i ij

i

j

a m

a m

j

t

i ij

i

I

i ij

i

P T t E e

a m

a m

























 
 
 
  
 
 
 
 

 
 
 
 
 

  
 
 

 
  
 





M

                     (15)

 

 

4. Illustrative Example 

This example aims to show how the proposed methods can be used to estimate the reliability 

of a new design, which is a variant of an existing item. The reliability statistic of interest is 

the duration of the failure free operating time. The existing design had 171 faults exposed 

during operation.  These have been classified into 8 different root causes.  The data have been 

obtained from a fleet of 200 items and the time to the first occurrence of a fault has been 

extracted for analysis.  There have been a considerable number of modifications on the old 

design to produce the new design.  An extensive elicitation exercise has been conducted on 

the new design, whereby several engineering concerns have been identified and assessed for 

likelihood of being realised as a fault in operation and an associated root cause class 

identified should a failure be realised.  Three of the eight root cause classes have been used 

for concerns.  Time has been partitioned into five intervals.  First we consider the prior and 

posterior estimates and then consider the predictive distribution for the failure free operating 

time of the design. 

4.1 Prior and Posterior Distribution 

The MLE’s of the parameters have been solved using equation (5) and are given in Table 1. 

Table 1  MLE of parameters for prior distribution 

Parameter MLE 

a1 5.7908 

a2 2.1397 

a3 7.4878 

a4 3.8746 

a5 0.5099 
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Table 2 provides a summary of both the EB prior estimates of the probability that a fault will 

be realised in the fleet within each of the time intervals and the empirical estimate for each of 

the root causes classes. 

Table 2  Comparison of empirical estimates and Empirical Bayes estimates 

Time 

Period 

Empirical 

Bayes 

Prior 

Estimates 

Root 

Cause 

1 

Root 

Cause 

2 

Root 

Cause 

3 

Root 

Cause 

4 

Root 

Cause 

5 

Root 

Cause 

6 

Root 

Cause 

7 

Root 

Cause 

8 

1 0.29 0.34 0.20 0.00 0.30 0.50 1.00 0.33 0.18 

2 0.11 0.09 0.00 1.00 0.07 0.00 0.00 0.00 0.08 

3 0.38 0.27 0.20 0.00 0.50 0.50 0.00 0.33 0.49 

4 0.20 0.10 0.60 0.00 0.13 0.00 0.00 0.33 0.25 

5 0.03 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

As the engineering concerns that were elicited were mapped to only three root cause classes 

(1, 4 and 8), we shall develop the posteriors for these classes only.  Figure 1 illustrates the 

means of the posterior distributions for the probability of realising a fault within each of the 

time intervals.  The prior probabilities are included for comparison. Figure 1 shows that this 

approach to inference does not impose a monotonic function on the rate of occurrence of 

failures but allows natural characteristics to be revealed through the data, such as the mode in 

time period 3.  

 

 

Figure 1 Posterior and prior probabilities for realising a fault within the fleet within each time 

interval for each root cause class 

  

4.2 Predictive Distribution – Failure Free Operating Time 

We seek inference on the duration of failure free operating time for the item.  We have prior 

distribution for each of the three root cause classes.  During the elicitation process a Poisson 
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distribution was agreed for each of the prior distributions.  For comparison and sensitivity 

analysis we will also consider the Negative Binomial and the Binomial distributions.  Note 

that for this paper we use the approximations presented earlier for convenience. 

Poisson Prior 

Table 3 summaries the probability that no item in a fleet of 200 will fail due to each of the 

root causes by the end of each of the time periods. Table 3 shows that root cause 8 is less of 

an issue that the concerns associated with root cause 1 and 2, which have very similar profiles 

in comparison. 

Table 3   Probability no item in the fleet will fail due given each root cause by end of time 

period. 

Time Period Root Cause 1 Root Cause 4 Root Cause 8 

1 0.0540 0.0411 0.4934 

2 0.0237 0.0168 0.3653 

3 0.0018 0.0001 0.0754 

4 0.0006 0.00002 0.0341 

5 0.0002 0.00002 0.0334 

 

As the new item is not being used across a fleet of 200 items we should convert the analysis 

to represent the probability of a single item surviving for a specified period time.  Assuming 

each item functions independently of each other we achieve this through calculating the 200
th

 

root of the survival probabilities for each root cause, as the time that the fleet first detects a 

fault is a minimum order statistic from a sample of 200.  The survival probabilities for a 

single item are summarised in Table 4. It is clear that approximately 4% of the fleet will not 

survive the first time period but two third of the fleet will survive the first 4 time periods. 

Table 4  Probability of an item surviving each time period by root cause and overall 

Time Root Cause 1 Root Cause 4 Root Cause 8 Item 

1 0.9824 0.9813 0.9961 0.9612 

2 0.9759 0.9747 0.9941 0.9456 

3 0.9459 0.9091 0.9761 0.8383 

4 0.9218 0.7839 0.9185 0.6637 

5 0.0002 0.00002 0.0334 0.0000 

 

Negative Binomial Prior & Binomial Prior 

In order to assess the sensitivity of the results to the Poisson prior distribution, analysis is 

conducted with a Negative Binomial prior assuming the same mean and a variance 10 times 

greater than the variance of the Poisson, as well as using a Binomial prior distribution with 

the same mean but with a variance equal to a 10
th

 the variance of the Poisson prior. The 

difference between these priors is shown in Table 5 where we record the difference in the 

expected number of items in a fleet of 200 that would be operating beyond the specified time. 

The results show that using the Negative Binomial prior will increase the expected number of 

items surviving although not greatly.  With the exception of time period 4, the differences 

were less than 1 item.  For the Binomial prior distribution the reverse occurs whereby the 

number of items expected to survive is slightly fewer than under the Poisson model. 
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Table 5  Arithmetic difference in expected number of items in a fleet of 200 surviving 

specified time periods  

Time Period Difference Negative Binomial Prior Difference Binomial Prior 

1 0.0629 -0.0064 

2 0.1167 -0.0119 

3 0.9907 -0.1040 

4 4.5137 -0.5072 

5 0.5637 -2.2E-08 

 

5. Summary and Conclusions 

A methodology has been presented for estimating the reliability of a variant design based 

upon the integration of historical data for the operational experience of the original design 

and expert engineering judgement to express the differences between the design variants 

through the identification of potential faults and associated likelihoods.  The problem which 

we consider is one where few observed failures are recorded for operational items and hence 

we are challenged to find robust inference.  An Empirical Bayes methodology for supporting 

statistical inference has been developed.  The literature suggests that the estimates resulting 

from the EB methodology are more accurate than traditional statistical methods. The 

methodology is considered appropriate for the specified problem due to the multitude of 

possible root causes that may exist.  This leads to the possibility of pooling data for accuracy 

through the construction of empirical priors, while adjusting the pooled estimate for each root 

cause separately to result in a unique distribution for each root cause.   

The approach we develop is an improvement over using the raw data on each root cause 

because of the intrinsic smoothing performed on the data.  Consider the raw probability 

estimates in Table 2 where seven of the eight root causes had no observations beyond the 

fourth time period. This creates a sharp finite support empirical distribution for the time to 

realise faults within these root causes, while two of the root causes would only permit faults 

to be realised within one time period.  The usefulness of smoothing data to improve inference 

is supported in the literature. 

It can be argued that the EB approach developed is an improvement over parametric 

modelling of the rate of occurrence of faults within operation because most models within the 

literature propose a smooth monotonically changing intensity function, while we propose a 

non-parametric model through the multinomial distribution.  The illustrative example 

provides evidence of a bi-modal intensity function where time period 1 and 3 appear to be 

peaks within the realisation process.    

The accuracy of the inference supported by this EB methodology increases as the stochastic 

behaviour of the root causes becomes more homogeneous. Hence the next stage in 

developing this methodology to develop data analysis techniques for homogenising the root 

causes.  
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