Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Free-electron masers based on two-dimensional distributed feedback

Phelps, A.D.R. and Konoplev, I.V. and Cross, A.W. and Macinnes, Philip and He, W. and Ronald, K. and Whyte, C.G. and Robertson, C.W. (2007) Free-electron masers based on two-dimensional distributed feedback. In: IEEE International Vacuum Electronics Conference, 2007. International Vacuum Electronics Conference IVEC . IEEE, Piscataway, New Jersey, pp. 423-424. ISBN 1-4244-0633-1

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The results of experimental studies of a coaxial free-electron masers (FEM) based on two-dimensional distributed feedback are presented. In the first set of experiments the FEM's interaction region was formed by a two-mirror cavity with 2D Bragg structures as input and output mirrors. In the second set of experiments a cavity with 2D and 1D mirrors was used. In both cases the input mirror provided two-dimensional (2D) distributed feedback and ensured mode selection over the wave azimuthal index, while the output mirror was used to close the feedback loop inside the two-mirror cavity. It was demonstrated that substituting the 2D output mirror with a 1D Bragg structure increased the output power while still maintaining spectral purity and spatial and temporal coherence. The FEM has been driven by an oversized high-current (1.5 kA) thin annular electron beam of 200 ns pulse duration. An maximum output power of ~60 MW corresponding to an efficiency of 10% was measured for an FEM based on 2D/1D cavity. The directional mode pattern of the microwave radiation from the output horn was also measured and compared with theoretical prediction. Analysing the spectrum of the RF signal the location of the operating frequency was found.