Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Radio frequency resonator structure and diagnostic measurements for a laboratory simulation of Auroral Kilometric Radiation

Ronald, K. and Speirs, David and McConville, S.L. and Phelps, A.D.R. and Robertson, C.W. and Whyte, C.G. and He, W. and Gillespie, K.M. and Bingham, Robert (2008) Radio frequency resonator structure and diagnostic measurements for a laboratory simulation of Auroral Kilometric Radiation. Physics of Plasmas, 15 (5). 056503. ISSN 1070-664X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Auroral Kilometric Radiation is emitted from regions of depleted plasma density in the Earth's polar magnetosphere. The radiation frequency is close to the local electron cyclotron frequency, polarized in the X-mode with an efficiency of ∼ 1%, with power up to 1 GW. Kinetic analysis of the instability in the descending auroral flux indicated that the phenomena scaled with the cyclotron frequency. Therefore, an experimental reproduction of the auroral geometry has been created scaled to laboratory dimensions by raising the radiation frequency to the microwave range. The experiment transports a 75-85 keV electron beam through a region of increasing magnetic flux density, with a mirror ratio of up to 30. The experiments measured the mode, spectrum, power, and conversion efficiency of the emitted radiation as a function of the mirror ratio in two resonance regimes, with frequencies of 4.42 and 11.7 GHz. The microwave diagnostics and measurements will be presented in this paper.