Radio frequency resonator structure and diagnostic measurements for a laboratory simulation of Auroral Kilometric Radiation
Ronald, K. and Speirs, David and McConville, S.L. and Phelps, A.D.R. and Robertson, C.W. and Whyte, C.G. and He, W. and Gillespie, K.M. and Bingham, Robert (2008) Radio frequency resonator structure and diagnostic measurements for a laboratory simulation of Auroral Kilometric Radiation. Physics of Plasmas, 15 (5). 056503. ISSN 1070-664X (https://doi.org/10.1063/1.2856649)
Full text not available in this repository.Request a copyAbstract
Auroral Kilometric Radiation is emitted from regions of depleted plasma density in the Earth's polar magnetosphere. The radiation frequency is close to the local electron cyclotron frequency, polarized in the X-mode with an efficiency of ∼ 1%, with power up to 1 GW. Kinetic analysis of the instability in the descending auroral flux indicated that the phenomena scaled with the cyclotron frequency. Therefore, an experimental reproduction of the auroral geometry has been created scaled to laboratory dimensions by raising the radiation frequency to the microwave range. The experiment transports a 75-85 keV electron beam through a region of increasing magnetic flux density, with a mirror ratio of up to 30. The experiments measured the mode, spectrum, power, and conversion efficiency of the emitted radiation as a function of the mirror ratio in two resonance regimes, with frequencies of 4.42 and 11.7 GHz. The microwave diagnostics and measurements will be presented in this paper.
-
-
Item type: Article ID code: 18132 Dates: DateEventMay 2008PublishedNotes: Strathprints' policy is to record up to 8 authors per publication, plus any additional authors based at the University of Strathclyde. More authors may be listed on the official publication than appear in the Strathprints' record. Subjects: Science > Physics > Plasma physics. Ionized gases Department: Faculty of Science > Physics Depositing user: Strathprints Administrator Date deposited: 21 Apr 2010 17:24 Last modified: 08 Apr 2024 17:38 URI: https://strathprints.strath.ac.uk/id/eprint/18132