Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

The effects of Indian red scorpion Buthus tamulus venom in vivo and in vitro

Rowan, E.G. and Vatanpour, H. and Furman, B.L. and Harvey, A.L. and Tanira, M.O.M. and Gopalakrishnakone, P. (1992) The effects of Indian red scorpion Buthus tamulus venom in vivo and in vitro. Toxicon, 30 (10). pp. 1157-1164. ISSN 1879-3150

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The Indian red scorpion Buthus tamulus (or Mesobuthus tamulus) can cause fatal envenoming, but its mechanism of action is unclear. Venom was tested in vivo in anaesthetized rats and in vitro on isolated cardiac and skeletal muscle preparations. In vivo, the venom caused marked rhythmical fluctuations in blood pressure preceding cardiovascular collapse and death. On sheep Purkinje fibres, venom could induce spontaneous action potentials and cause prolongation of action potential duration. In chick biventer cervicis and mouse triangularis sterni preparations, venom enhanced the release of acetylcholine and induced repetitive firing of nerve action potentials in response to single shock stimulation. High concentrations caused stimulation then block of neuromuscular transmission. The main effects of Buthus tamulus venom are likely to be due to toxins that affect the opening of Na+ channels in nerves and muscles. This will cause an increase in the release of neurotransmitters in the peripheral nervous system, which may produce cardiovascular abnormalities and respiratory paralysis.