Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Pharmacodynamics of tolfenamic acid in dogs. Evaluation of dose response relationships

McKellar, Q.A. and Lees, P. and Gettinby, G. (1994) Pharmacodynamics of tolfenamic acid in dogs. Evaluation of dose response relationships. European Journal of Pharmacology, 253 (3). pp. 191-200. ISSN 0014-2999

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Tolfenamic acid was administered to beagle dogs at 2, 4 and 8 mg/kg bodyweight i.m. and the concentration of drug in plasma and in inflamed (administered carrageenan) and non-inflamed subcutaneous tissue cage fluid was measured. The concentration of thromboxane B2 in serum from blood allowed to clot under standardized conditions was determined and the concentrations of prostaglandin E2, 12-hydroxyeicosatetraenoic acid (12-HETE) and leucocyte numbers were measured in fluid from the carrageenan administered tissue cages. Skin temperature was also measured over each tissue cage following administration of drug. Tolfenamic acid displayed linear pharmacokinetics since the area under the plasma concentration time curve (AUC) values were 13.74 ± 1.88, 29.82 ± 6.53 and 50.52 ± 5.73 μg/ml.h following administration of 2, 4 and 8 mg/kg, respectively. Tolfenamic acid proved to be a potent inhibitor of ex vivo thromboxane B2 generation in clotting blood. Maximal inhibition was greater than 80% at all dose rates and 97% at the 8 mg/kg dose rate 1 h after drug administration. It also proved to be a potent inhibitor of prostaglandin E2 production in inflammatory exudate, and significantly (P < 0.05) decreased prostaglandin E2 production at all dose levels. Tolfenamic acid did not significantly alter 12-HETE generation or white blood cell accumulation in inflammatory exudate. Tolfenamic acid significantly reduced the elevated skin temperature over carrageenan administered cages at all dose levels.