Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

GAUGE: The GrAnd Unification and Gravity Explorer

Amelino-Camelia, G. and Aplin, K. and Arndt, M. and Barrow, J.D. and Bingham, Robert and Borde, C. and Bouyer, P. and Caldwell, M. and Lockerbie, N.A. and Pegrum, Colin (2009) GAUGE: The GrAnd Unification and Gravity Explorer. Experimental Astronomy, 23 (2). pp. 549-572. ISSN 0922-6435

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The GAUGE (GrAnd Unification and Gravity Explorer) mission proposes to use a drag-free spacecraft platform onto which a number of experiments are attached. They are designed to address a number of key issues at the interface between gravity and unification with the other forces of nature. The equivalence principle is to be probed with both a high-precision test using classical macroscopic test bodies, and, to lower precision, using microscopic test bodies via cold-atom interferometry. These two equivalence principle tests will explore string-dilaton theories and the effect of space-time fluctuations respectively. The macroscopic test bodies will also be used for intermediate-range inverse-square law and an axion-like spin-coupling search. The microscopic test bodies offer the prospect of extending the range of tests to also include short-range inverse-square law and spin-coupling measurements as well as looking for evidence of quantum decoherence due to space-time fluctuations at the Planck scale.