Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Functionalized nanoparticles for nucleic acid sequence analysis using optical spectroscopies

Graham, D. and Faulds, K. and Thompson, D. and Mackenzie, F. and Stokes, R. and Macaskill, A. (2009) Functionalized nanoparticles for nucleic acid sequence analysis using optical spectroscopies. Biochemical Society Transactions, 37 (2). pp. 441-444. ISSN 0300-5127

Full text not available in this repository.Request a copy from the Strathclyde author


SERRS (surface-enhanced resonance Raman scattering) is a vibrational spectroscopy which allows extremely sensitive and selective detection of labelled DNA sequences with detection limits which rival, and in most cases Surpass, that of fluorescence. SERRS relies on a visible chromophore adsorbing on to an enhancing surface. DNA itself is not SERRS-active, as it lacks a suitable visible chromophore and has poor adsorption properties on to the surfaces used for enhancement. The surface normally used for enhancement in these sorts of studies are metallic nanoparticles and, through modification of DNA probes by the addition of suitable SERRS labels, signals can be obtained that are highly sensitive and very selective. The aggregation state of the nanoparticles is critical to the sensitivity, and, in the present paper, we show how straightforward detection of labelled DNA probes can be achieved using SERRS in a quantitative manner and with a variety of different commercially available labels. in a second approach, we show how the properties of aggregation to turn on the SERRS effect can be exploited through DNA hybridization to give identification of a particular DNA sequence. This approach lends itself to closed-tube formats and is a promising way forward for molecular diagnostics using SERRS.