Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Developing and applying an integrated modular design methodology within a SME

Yan, X.T. and Stewart, B. and Wang, W. and Tramsheck, R. and Liggat, J. and Duffy, A.H.B. and Whitfield, I. (2007) Developing and applying an integrated modular design methodology within a SME. In: 16th International Conference on Engineering Design (ICED 07), 2007-08-28 - 2007-08-31.

[img]
Preview
Text (strathprints016712)
strathprints016712.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Modularity within a product can bring advantages to the design process by facilitating enhanced design reuse, reduced lead times, decreased cost and higher levels of quality. While the benefits of modularity are becoming increasingly better known, at present it is usually left to the designers themselves to introduce modularity into products. Studies into modularity have shown that byimplementing 'formal' methods, further benefits can be made in terms of time, cost, quality and performance. Current approaches that have been proposed for the formal development of modular design methodologies fail to accurately represent knowledge that is inherently produced during design projects and fail to consider design from the different viewpoints of the development process. This work, built on previous work on modularity and design for reuse, aims to develop an integrated design methodology that will optimise the modules created through the design process and allow for modularity to be 'built-in' to product development from the initial stages. The methodology andassociated tools have been developed to provide an easy-to-use approach to modularity that has support for design rationales and company knowledge that aid in effective design decision making. The methodology, named GeMoCURE, provides an integrated total solution to modular design based on reuse of proven physical and knowledge modules. Its incremental nature allows for the optimalstructure to be maintained as the design progresses. A special focus has been on the application of this approach for Small to Medium Enterprises (SMEs), which are typically challenged by a lack of design human resources and expertise.