Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Real time resource scheduling within a distributed collaborative design environment

Whitfield, R.I. and Duffy, A.H.B. and Coates, G. (2007) Real time resource scheduling within a distributed collaborative design environment. In: 16th International Conference on Engineering Design (ICED 07), 2007-08-28 - 2007-08-31.

Text (strathprints016709)
Accepted Author Manuscript

Download (381kB) | Preview


Operational design co-ordination is provided by a Virtual Integration Platform (VIP) that is capable of scheduling and allocating design activities to organisationally and geographically distributed designers. To achieve this, the platform consists of a number of components that contribute to the engineering management and co-ordination of data, resources, activities, requirements and processes. The information required to schedule and allocate activities to designers is defined in terms of: the designers' capability to perform particular design activities; commitment in terms of the design activities that it is currently performing, and capacity to perform more than one design activity at the same time as well as the effect of increased capacity on capability. Previous approaches have been developed by the authors to automatically allocate resources to activities [1-3], however these approaches have generally been applied either within the context of real-time allocation of computational resources using automated design tools, or in the planning of human resources within future design projects and not for the real-time allocation of activities to a combination of human and computational resources. The procedure presented here is based upon this previous research and involves: the determination of the design activities that need to be undertaken on the basis of the goals that need to be achieved; identification of the resources that can undertake these design activities; and, the use of a genetic algorithm to optimally allocate the activities to the resources. Since the focus of the procedure is toward the real-time allocation of design activities to designers, additional human issues with respect to scheduling are considered. These human issues aspects include: consideration of the improvement in performance as a result of the experience gained from undertaking the activity; provision of a training period to allow inexperienced designers the opportunity to improve their performance without their performance being assessed; and the course of action to take when a designer is either unwilling or unable to perform an activity.