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Abstract

On wet and windy days, the inclined cables of cable-stayed bridges may ex-
perience a large amplitude oscillation known as Rain-Wind-Induced Vibration
(RWIV). It has previously been shown by ‘in-situ’ and wind-tunnel studies that
the formation of rain-water accumulations or ‘rivulets’ at approximately the
separation points of the external aerodynamic flow field and the resulting effect
that these rivulets have on this field may be one of the primary mechanisms
for RWIV. A numerical method has been developed to undertake simulations of
certain aspects of RWIV, in particular, rivulet formation and evolution. Specif-
ically a two-dimensional model for the evolution of a thin film of water on the
outer surface of a horizontal circular cylinder subject to the pressure and shear
forces that result from the external flow field is presented. Numerical simula-
tions of the resulting evolution equation using a bespoke pseudo-spectral solver
capture the formation of two-dimensional rivulets, the geometry, location and
growth rate of which are all in good agreement with previous studies. Exami-
nations of how the distribution and magnitude of aerodynamic loading and the
Reynolds number influence the rivulet temporal evolution are undertaken, the
results of which indicate that while all three affect the temporal evolution, the
distribution of the loading has the greatest effect.

Keywords: Rain-wind-induced vibration, Circular cylinder, Numerical
simulation, Pseudo-spectral method, Thin-film approximation

1. Introduction

On wet and windy days, the inclined cables of cable-stayed bridges may
experience a large amplitude oscillation known as Rain-Wind Induced Vibration
(RWIV). Such oscillations have been recorded on several bridges worldwide since
the phenomenon was initially observed on the Meikonishi Bridge near Nagoya,
Japan, as reported by Hikami and Shiraishi [10]. Notable amongst the literature
are the Erasmus Bridge, Rotterdam, The Netherlands, [7], the Fred Hartmann
Bridge, Baytown, Texas [21], and the Dongting Lake Bridge, Hunan Province,
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China [14], where full scale ‘in-situ’ investigations have been undertaken. Such
studies have led to a sizeable knowledge base being generated as to the conditions
under which RWIV most commonly occurs.

In summary, this data suggests that RWIV tends to occur only over a re-
stricted range of wind velocities (typically 5 to 15 m/s), under moderate rain
conditions, for cables that descend in the direction of the wind. The response
itself normally occurs in the cable-pylon plane with a larger amplitude and lower
frequency than vortex-induced vibration. Through such characteristics RWIV
can thus be identified as a distinct aeroelastic phenomenon, with particular fea-
tures that distinguish it from other aeroelastic instabilities such as galloping or
the aforementioned vortex-induced vibration.

It has previously been reported that in cases where RWIV does occur, the
thin film of rain water present on the cable normally accumulates to form two
rivulets near the separation points of the external aerodynamic field around a
dry cable [2]. Although in practice rivulets are a three-dimensional phenomenon
with axial fluid flow, herein the term rivulet will also be used to represent the
accumulations of fluid in the present two-dimensional solution. The experimen-
tal wind-tunnel studies undertaken to support the full-scale tests, such as those
of Bosdogianni and Olivari [2], Matsumoto et al. [12]), Flamand [5], Verwiebe
and Ruscheweyh [18], Cosentino et al. [3], Gu and Du [8] and Wang et al. [19],
use rivulets of varying origin (some using ‘artificial’ rivulets, but others allowing
rivulets to form ‘naturally’ from a film of water), but all the above authors accept
that a rivulet must be present for RWIV to occur, and so any numerical simu-
lation of the RWIV instability should also include the formation and evolution
of these rivulets. Likewise several analytical models such as those of Yamaguchi
[20], Gu and Huang [9] and Peil and Dreyer [15] have also been developed,
and while these display individual nuances determined by the exact nature of
the particular aspect under investigation, they typically use a two-dimensional,
multiple mass, multiple degree-of-freedom, spring mass damper system and a
quasi-steady approximation of the aerodynamic forces to represent the RWIV
phenomenon.

In comparison to experimental and analytical models, however, computa-
tional models pertaining to RWIV are scarce due to the complexity of the prob-
lem and the need to couple models for the thin film of water to an unsteady
aerodynamic field and the structural dynamics of the cable. Previous work by
two of the authors [17] using the aerodynamic solver DIVEX investigated the
effect of both static and circumferentially oscillating ‘artificial rivulets’ on the
unsteady aerodynamic field. This determined that for a static ‘artificial’ rivulet
the system responds in a manner reminiscent of classical galloping with rivulet
location being the dominant influence on the aerodynamic characteristics, which
is consistent with previous experimental research of Gu and Huang [9] and Mat-
sumoto et al. [13], while with an oscillating rivulet the response induced was
significantly different and more complex. In future the authors plan to couple
that solver to another which is capable of predicting the evolution of a thin-film
of fluid given an aerodynamic loading such that the temporal influence of rivulet
evolution on the aerodynamic field and the influence of the aerodynamic field

2



on rivulet formation and evolution can be determined. It is hoped that this new
model will provide useful information to help in the development of a better
understanding of the underlying RWIV mechanism, which is as yet unknown,
and act as an initial step on the path to numerical simulation of RWIV, which
is relatively undeveloped compared with experimental and analytical modelling.
However, to accomplish this, a thin-film solver must first be constructed and
validated.

Reisfeld and Bankoff [16] derived an equation describing the evolution of a
two-dimensional thin film of fluid on the outside of a horizontal cylinder sub-
ject to gravity, surface tension, thermo-capillary and long-range inter-molecular
forces, and following this approach Peil and Dreyer [15] and Lemaitre et al. [11]
derived a corresponding equation for a film on a cylinder subject to gravity,
surface tension, wind shear and the motion of the cylinder. Solving the latter
equation numerically, Peil and Dreyer [15] computed the spreading of an ini-
tially parabolic rivulet, and Lemaitre et al. [11] showed that a film of initially
uniform thickness will develop “bulges” (“rivulets”) in the neighbourhood of
the points where the air flow on a dry cylinder would separate; moreover, they
concluded that shear and pressure forces are of similar importance in generating
these bulges. A similar approach to that of Peil and Dreyer [15] and Lemaitre
et al. [11] is adopted here in an analysis of the behaviour of a thin fluid film on a
cylinder in an external flow, except that here the latter is determined separately,
and is then coupled to the film flow via the normal stresses and shear stresses
that it exerts.

The present paper describes a numerical model for the simulation of rivulet
formation and evolution which has been developed by the Departments of Me-
chanical Engineering and Mathematics at the University of Strathclyde. This
utilises the lubrication approximation to develop a two-dimensional model that
simulates the interaction between a given static external aerodynamic field and
a thin film of rain water on a horizontal circular cylinder. Using this method
the governing evolution equation for the thickness of the film subject to nor-
mal and tangential stresses that result from this aerodynamic field in addition
to the forces of surface tension and gravity is derived. The bespoke pseudo-
spectral solver developed to solve this equation is then verified against previous
analytical and numerical investigations. A selection of possible combinations of
loading, namely pressure, shear, surface tension and gravity, are investigated,
and the effects that these have on the film evolution are outlined. The tem-
poral evolutions of the films are presented for the first time, and the effects
of the magnitude and the distribution of the external aerodynamic loading are
examined over a Reynolds number range representative for RWIV.

2. Model

Two-dimensional, unsteady flow of a thin film of incompressible viscous fluid
with uniform dynamic viscosity µ and density ρ on the outer surface of a station-
ary horizontal circular cylinder of radius R is considered. This restricts all load-
ing to act purely within the two-dimensional system defined and is in line with
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the previous numerical and analytical studies into aspects of RWIV by Lemaitre
et al. [11], Yamaguchi [20] and Gu and Huang [9]. Should an inclined cylinder
be considered then the effective component of gravity would be reduced; how-
ever, this would introduce a gravity-driven flow down the cylinder, and would
also introduce uncertainties regarding the effective cylinder cross-section and
the resulting aerodynamic loading. As figure 1 shows, the free surface of this
film is subject to a prescribed pressure, P = P (θ, t), and a prescribed shear,
T = T (θ, t), exerted by the external aerodynamic field, which are functions of
clockwise angle from the windward (left-hand) horizontal, θ (0 ≤ θ ≤ 360◦) and
time t.

2.1. Model Description
We take the film to be thin, its aspect ratio ε (defined by ε = H/R, where

H denotes a typical film thickness) satisfying ε ¿ 1.
We denote the fluid velocity and pressure by u and p, respectively. Initially

we refer the description to polar coordinates r, θ, z with the z axis along the
axis of the cylinder; then the surface of the cylinder is given by r = R. We
denote the film thickness by h = h(θ, t) (unknown a priori); then the free
surface of the film is given by r = R+h. Near any station θ = constant we may
alternatively refer the description to a local Cartesian coordinate system Oxyz
with Ox tangential to the cylinder (increasing in the direction of increasing θ,
so that x = Rθ + constant) and Oy along the outward normal to the cylinder,
with y defined by y = r−R, so that the cylinder is at y = 0 and the free surface
is at y = h. In the latter coordinate system the governing mass-conservation
and Navier–Stokes equations give, at leading order in ε,

ux + vy = 0, (1)

0 = −px − ρg cos θ + µuyy, (2)

0 = −py, (3)

where subscripts denote differentiation, and we have written

u = ui + vj, g = −g(i cos θ + j sin θ). (4)

In equations (2) and (3) the inertia terms have been neglected; this is valid
provided that the film Reynolds number R̂e (defined by R̂e = ÛR/ν, where
ν = µ/ρ and Û are the kinematic viscosity and a typical velocity of the film,
respectively) is such that ε2R̂e ¿ 1. Also since the film is thin (ε ¿ 1), terms
such as uxx and vyy in the momentum balances are negligible, as is a contribution
ρg sin θ in (3). Equations (1)–(3) are subject to the no-slip and no-penetration
conditions on the cylinder:

u = v = 0 on y = 0, (5)
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and, at the free surface, to the kinematic condition

v = ht + uhx on y = h, (6)

the tangential stress condition

µuy = T on y = h, (7)

and the normal stress condition

p = γκ + P on y = h, (8)

where γ is the coefficient of surface tension and κ is the mean curvature of the
free surface, given to first order by

κ =
1
R
− 1

R2
(h + hθθ). (9)

The azimuthal volume flux of fluid in the film is given by

Q =
∫ h

0

udy, (10)

and using this and (1) we may replace (6) by the local conservation law

ht + Qx = 0. (11)

2.2. Evolution Equation for h(θ, t)
Integrating (3) subject to (8) we obtain

p = γκ + P (12)

(independent of y), and then integrating (2) with respect to y subject to (5)
and (7) we obtain

u = − 1
2µ

(ρg cos θ + px) (2hy − y2) +
Ty

µ
. (13)

Therefore from (10)

Q = − 1
3µ

(ρg cos θ + px) h3 +
Th2

2µ
. (14)

Finally, substituting (14) into (11) and using (9) and (12) leads to the evolution
equation for h(θ, t):

ht +
(

Th2

2µR

)

θ

−
[

h3

3µR

(
ρg cos θ − γ

R3
(h + hθθ)θ +

Pθ

R

)]

θ

= 0. (15)
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This equation is to be solved subject to an initial condition of the form h(θ, 0) =
h0(θ), where h0(θ) is the initial thickness of the film. For definiteness in the
present work we choose an initially uniform film h0 = constant, and allow the
film to evolve according to (15) to see if rivulets develop.

The present evolution equation (15) agrees with the corresponding equation
given by Lemaitre et al. [11] in the case of flow over a stationary cylinder,
and with the earlier equation of Reisfeld and Bankoff [16] for the case without
aerodynamic loading. Given the nature of the problem the same assumptions
regarding the thin film and the boundary conditions were made here as were
made by Lemaitre et al. [11], and so the evolution equation (15) is essentially
the same as that given by Lemaitre et al (2007); however, unlike in the previous
work, we present (15) in a dimensional rather than non-dimensional format, this
being done to facilitate the future coupling to an unsteady aerodynamic solver.

3. Numerical Solver

As the evolution equation (15) is a fourth order, non-linear, non-constant
coefficient partial differential equation, it cannot, in general, be solved ana-
lytically. Therefore, a pseudo-spectral (or collocation) method solver using an
N -point Fourier spectral mode in space and a fourth order Adams-Bashforth
time-marching algorithm was constructed. This numerical method was chosen
specifically because of the periodic, continuous nature of the problem over the
interval [0◦, 360◦) and the rapid rate of convergence it provides to the solution,
given the presumed smoothness of the final result.

As with the mathematical formulation there are again distinct similarities
between the present numerical solver and those of Reisfeld and Bankoff [16] and
Lemaitre et al. [11], reflecting the fact that the Fourier pseudo-spectral method
is so well suited to the problem under examination. That said, the present
solver was created independently for use within a wider context, particularly
the future coupling previously mentioned. In addition to examining a wider
range of cases than previously studied, including how the Reynolds number and
the magnitude and form of the aerodynamic loading affect rivulet formation and
evolution, the present study also reports this information in a temporal manner
for the first time. Moreover, at a lower level it should act as confirmation of
the applicability of the method itself, and provide independent validation of the
results of Reisfeld and Bankoff [16] and Lemaitre et al. [11].

3.1. Parameter Selection
Efficient usage of the Fast Fourier Transform (FFT) requires N to be a power

of 2 [6]. Through a computational convergence study of a problem that will be
discussed in section 4.1, an equi-spaced distribution of N = 128 points was found
to provide the optimum compromise between run-time and stability, and spatial
resolution for the present code. A partial summary of this convergence study is
given in table 1. This shows that the CPU time required to solve the problem
for a given number of timesteps, in this instance 1 × 105, is approximately
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proportional to the number of points used in the calculation (t ∝ N), while for
a given timestep size, ∆t, the solution was also found to resolve to a greater final
time for fewer points, although a limit was reached and no simple correlation was
found. These final times at which a resolved solution could be obtained, τmax,
where a higher value indicates a more stable solution, are also given in table 1
for a timestep of ∆t = 1.0×10−6 s. These use a reduced time τ = gh0

2t/3νR, as
defined by Reisfeld and Bankoff [16]; the solution becomes singular as τ → 0.5,
there being an unbounded growth in film height at the lowest point of the
cylinder, h(270◦, τ). Although a faster, more stable solution can be found with
fewer points, this reduces overall spatial resolution. Therefore given the values
in table 1 and the overall resolution required, a value of N = 128 was chosen.

A similar convergence study to that shown in table 1 was undertaken with
regard to timestep size for a given number of points. Although the details are
omitted, this revealed a time-step ∆t = 5.0×10−7 s to be sufficient for N = 128.
From these studies, the number of points and time-step were fixed at N = 128
and ∆t = 5.0× 10−7 s, respectively, throughout this investigation.

Standard values for gravity and the properties at an air-water interface at
20◦C were selected for use throughout the present study and are listed in table
2, while other parameter values, such as incident wind velocity, V , were chosen
to represent typical values for RWIV and to ensure that the ratio of initial film
thickness to cylinder radius h0/R = 6.3 × 10−3 was consistent with those of
previous experimental and computational studies by Flamand [5] and Lemaitre
et al. [11]. With these parameter values, the Reynolds number implemented
was a subcritical value typical for RWIV of Re ' 1× 105, where Re = V D/ν∗

concerns the external fluid, in this instance air (rather than the thin film), and
is defined in terms of a typical incident wind speed V , the cylinder diameter D
and the kinematic viscosity, ν∗.

The distributions of pressure P and shear T due to the external aerodynamic
field were assumed to be constant in time and thus functions only of angle, i.e.
P = P (θ) and T = T (θ). These are based upon the time averaged pressure and
friction coefficients, CP and CF , for the external aerodynamic field around a dry
cylinder, values for which were determined experimentally by Achenbach [1] at
a Reynolds number similar to that under investigation here of Re = 1 × 105.
Although, as previously outlined, future developments of the present work will
use a coupled aerodynamic solver to ascertain the aerodynamic coefficients CP

and CF based upon the present evolutionary shape, this is not the focus of the
present study. Thus, although the assumption that the formation of rivulets
will not affect the aerodynamic profile is limited and strictly valid only for a
uniform film, it is seen as applicable for the present study.

One of the limitations of the pseudo-spectral method is its susceptibility to
aliasing of high frequencies, especially in the non-linear terms present in the evo-
lution equation (15). To avoid this problem, and to maintain a high convergence
rate (for the pseudo-spectral method this is greater for analytic functions), a
truncated Fourier series representation of the aerodynamic coefficients CP and
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CF of the form

CP , CF =
a0

2
+

n∑

k=1

[ak cos(kθ) + bk sin(kθ)] (16)

was used in the analysis. To ensure that the number of terms chosen in (16)
is sufficient to reproduce the variation of the aerodynamic coefficients around
the cylinder accurately, a brief study of the number of terms required, n, was
undertaken. The results of this investigation for both coefficients were very
similar and hence only a summary of the error due to series truncation for the
pressure coefficient CP is given in figure 2. This revealed that the coefficient
of determination, R2 (not to be confused with the cylinder radius R) was high,
R2 > 0.985, throughout the range of number of terms investigated, [2, 30]. It
also showed that the percentage error between the truncated series and experi-
mentally determined values at a specific value of θ for the majority of the range
investigated was small. This, however, was not true at either of the two sharp
peaks in the CP profile at θ ' 70◦ and θ ' 290◦, where the largest errors oc-
curred (figures 2 and 3). At these points the percentage error began to plateau
at a minimum value only after n ≥ 20 terms, and therefore the first twenty
terms were chosen to represent the two coefficients. A comparison of the final
truncated Fourier series (16) using n = 20 with the original experimental coef-
ficients of Achenbach [1] is shown in figure 3. Note that the friction coefficient
shown, CF = CF /max(CF ), is a normalised version of CF . For the numerical
investigation, these series representations of CP and CF were then appropriately
scaled such that the maximum values of pressure and shear loadings matched
those used by Lemaitre et al. [11], thus allowing direct comparisons between the
results.

4. Model Verification

Verification of the numerical procedure was undertaken by comparison of
the present results with analytical solutions under two specific loading cases,
namely

1. gravity and surface-tension loading (T ≡ 0 and P ≡ 0),
2. only constant shear loading (T (θ) ≡ constant, with P ≡ 0, γ = 0 and

g = 0).

4.1. Gravity and Surface-Tension Loading
Initial verification was undertaken by comparison of the present results with

the work of Reisfeld and Bankoff [16] who investigated the heating or cooling
of a thin viscous film of fluid on the outer surface of a circular cylinder, subject
to the forces of gravity and surface tension. Under isothermal conditions this
work corresponds directly to the present study when no aerodynamic loading
is considered (i.e. when pressure P ≡ 0 and shear T ≡ 0). In this case, the
evolution equation (15) thus represents a direct competition between the effects
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of gravity, viscosity and surface tension on the film. In particular, in the limit of
a very large Bond number Bo = ρgR3/h0γ →∞, [16] determined an analytical
solution for the film height around the cylinder in terms of a reduced time
τ = gh0

2t/3νR, subject to the initial condition h(θ, 0) = 1, namely (in the
present notation)

h(θ, τ) =





(1 + 2τ)−1/2 for θ = 90◦,
(1− 2τ)−1/2 for θ = 270◦,
(cos θ0/ cos θ)1/3 for 0◦ ≤ θ < 360◦, θ 6= 90◦, 270◦,

(17)

where θ0 = θ0(θ, τ) is determined from

F (g(θ), sin 75◦)− F (g(θ0), sin 75◦) + 2(3)1/4(cos θ0)2/3τ = 0, (18)

in which F (φ, k) is an incomplete elliptic integral of the first kind defined by

F (φ, k) =
∫ φ

0

dx√
1− k2 sin2 x

, (19)

and g(ψ) satisfies

cos g(ψ) =
√

3− 1 + (cos ψ)2/3

√
3 + 1− (cos ψ)2/3

. (20)

To effect a valid comparison between the present work and the analytical
solution a study was undertaken to determine practical values for the numerical
representation of Bo → ∞. To achieve this, the values of cylinder radius R
and initial film thickness h0 were varied whilst maintaining a constant ratio of
h0/R = 6.3 × 10−3. All other parameters were kept at the original values as
listed in table 2. The results of this study are shown in figure 4 which plots
the final resolved time, τmax, as a function of Bo. Equation (17) predicts that
the film height at the lowest point, h(270◦, τ), becomes singular as τ → 0.5;
therefore τmax → 0.5− as Bo → ∞, and as illustrated in figure 4, in practice
Bo ≥ 1× 107 is sufficient to represent this.

Using the parameters chosen for RWIV shown in table 2 results in Bo =
1.4× 105, which is below the range for the exact solution (17) to be applicable.
Therefore for the purposes of verification of the numerical model, the initial
height of film, h0, and radius of the cylinder, R, were each increased by an
order of magnitude, to 0.8m and 0.005m, which gives a corresponding Bond
number of 1.4×107. To verify the pseudo-spectral solver for Bo = 1.4×107, the
computational results were compared with the analytical solution of Reisfeld and
Bankoff [16] given in (17) – (20). Figure 5 shows the evolution of the normalised
film thickness, h/h0, at the highest and lowest points of the cylinder, θ = 90◦

and 270◦, with reduced time τ . The results show excellent agreement up to
τ ' 0.45 where the numerical calculations become increasingly less accurate
and more unstable due to the singularity that arises at θ = 270◦ as τ → 0.5.

To verify the procedure over the entire cylinder surface [0◦, 360◦) and not
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just at two specific points (θ = 90◦ and 270◦), the present results were also
compared to the analytical solution (17) for all θ at specific instants of reduced
time. Figure 6 shows one such comparison, specifically τ = 0.4, which is typical
of the excellent agreement for all values of τ ≤ 0.45.

4.2. Constant Shear Loading Only
In contrast to the previous section, the present subsection examines the

response to loading that arises from the aerodynamic field, namely that of a
purely shear-driven flow subject to a constant surface shear T . Details of the
solution of this problem, along with a note on the limits of its applicability, are
presented in the appendix, in which it is shown that the (implicit) solution for
h(θ, t) satisfying the initial condition h(θ, 0) = h0(θ) is given by

h = h0

(
θ − Th

µR
t

)
. (21)

If we take the initial profile to be uniform, h0(θ) = constant, under the action
of a constant shear the film retains this uniform profile for all time, which is
rather uninteresting. Therefore we will examine a simple non-uniform initial
profile, namely, h0(θ) = H(1− a cos θ) with H > 0 and |a| < 1. Then (21) gives
the implicit equation

h

H
= 1− a cos

(
θ − Th

µR
t

)
(22)

which determines h as a function of θ and t. Using the parameters from table
2 and an initial film thickness profile with H = 0.0005m and a = 0.1 then, as
shown in the appendix, the analytical solution (21) predicts that the profile of
the free surface will ‘break’ at time t = 1.6032 s and position θ = θs ' 123◦.
This was indeed found to be the case, as can be seen in figure 7, which shows
a comparison between the present results and the theoretical profile (21) at
this ‘breaking’ time. Indeed this excellent agreement was found for all times
t < 1.6032. Figure 7 also displays the comparison between the analytical and
the presently determined profiles at an earlier instant, t = 1 s, typical for all
times up to this ‘breaking’ time.

As was true for the previous verification study in section 4.1, the excellent
agreement between the present results and the analytical solution was found
both for specific instants in time and for the temporal evolution at specific points
on the surface. The latter can be seen in figure 8 which shows the temporal
evolution of normalised film height at two specific points on the top and bottom
of the cylinder, namely θ = 90◦ and θ = 270◦, which are representative for the
entire cylinder.

5. Results

Four different combinations of pressure P , shear T , surface tension γ and
gravity g loading were considered in this study. These were
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1. gravity and surface tension (T ≡ 0 and P ≡ 0),
2. shear and surface tension (P ≡ 0 and g = 0),
3. pressure and surface tension (T ≡ 0 and g = 0),
4. full loading (P , T , g and γ 6= 0),

where the pressure and shear loads represent the normal and tangential com-
ponents of the surface stress which result from the aerodynamic field. Several
sub-cases such as how the magnitude and form of aerodynamic loading, and
the Reynolds number affect the evolutionary response are examined for the first
time. The results are also presented in a temporal manner for the first time.

5.1. Gravity and Surface-Tension Loading
The combination of gravity and surface-tension loading was examined for the

realistic values of h0 and R shown in table 2. Figure 9 illustrates the temporal
evolution of film thickness h as a function of θ and provides a clear representation
of the film ‘thinning’ on the upper surface of the cylinder and a ‘spike’ in the film
thickness growing on the lower surface, and the rates at which these occur. The
fluid that accumulates at the base of the cylinder increases in depth until the
lubrication approximation is violated and the theoretical method is no longer
valid, which is consistent with the analytical solution (17), the computational
work of Reisfeld and Bankoff [16] and the verification study in the previous
section.

A study into how the variation of the relative magnitude of the loadings due
to gravity or surface tension affect the evolutionary response was undertaken
by varying the magnitude of the gravity number, G = gh3

0/3ν2, which measures
the ratio of gravitational to viscous forces. The results showed that, provided
Bo is considerably larger than 1×105, altering the relative effects of loading due
to gravity or surface tension through variation of G by two orders of magnitude
does not significantly change the solution at the same value of reduced time, τ ;
rather this alters only the real time t taken to arrive at that solution. This is
due to the dominance of gravity over surface-tension effects at these gravity and
Bond numbers. If Bo is considerably smaller than 1 × 105, this dominance is
lost and the results change dramatically; this however, is outwith the scope of
the present work, and the reader is referred to Reisfeld and Bankoff [16] who
provide a fuller discussion of flows at lower Bo. To demonstrate this relation to
the timescale used in the examination, figures 10 and 11 show the normalised
height h/h0 of three different fluids, water, benzene and mercury, at the same
instant of real time t and reduced time τ , respectively. For each fluid the
Bond number was approximately the same, but crucially the gravity number
was distinctly different. The values of these parameters and the standard fluid
properties at 20◦C for each of these three fluids are given in table 3. As in
the initial verification study in section 4.1 the values of cylinder radius R and
initial film thickness h0 were again both increased by a factor of ten to 0.8m
and 0.005 m, to ensure Bo À 1× 105, specifically Bo = 1.4× 107.

Closer inspection of figure 10 reveals that as mercury has a significantly
greater gravity number G = O(107), this film evolves considerably quicker than
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those of the other two fluids, whereas because the gravity numbers of benzene
and water are more closely matched and lower than that of mercury, namely
G = O(105), these films develop at approximately the same rate, with water,
which has the lowest value of G, being the slowest to evolve. Finally in the
limiting case of gravity and surface tension being varied in such a way that
Bo remains constant, the minimal variations at fixed reduced time τ , shown in
figure 11, are eliminated altogether.

5.2. Shear and Surface-Tension Loading
The temporal evolution of the thin film under the effect of shear T and

surface tension γ loading is shown in figure 12. Under this combination of load-
ings, two distinct symmetrically placed rivulets form, one each on the upper and
lower surfaces. Figure 12 shows the evolution at early times of these rivulets,
whose location is just windward of the clockwise and anti-clockwise separation
points for a dry cylinder at the same Re, which is consistent with the previous
experimental analysis of Bosdogianni and Olivari [2] and the numerical results
of Lemaitre et al. [11]. Closer examination of the temporal evolution of the
rivulets in figure 12 reveals that they are of approximately equal height, profile
and growth rate; the minor discrepancies between the two can be attributed
to a small asymmetry in the applied shear loading distribution which results
from the faithful approximation of the aerodynamic coefficients determined ex-
perimentally by Achenbach [1], since with a perfectly symmetric distribution
of aerodynamic coefficients the two rivulets are indeed identical and symmetric
about the incident wind.

The present results compare favourably with the only other computational
results available for the same problem, namely those of Lemaitre et al. [11],
as illustrated in figure 13, which displays both sets of results at a specific in-
stant in time, t = 6.9 × 10−3 s, the only time at which the results of Lemaitre
are available. The minor differences between the two solutions can again be
attributed to a variation in the distribution used for CF in the two schemes.
To confirm this, the governing equation from Lemaitre et al. [11] was used in
the present solver with the present distribution of CF . When these results are
compared with those obtained using the present evolution equation (15), they
were found to be identical over the entire time range under investigation. Figure
14 illustrates this at a ‘late’ time of t = 34.0 × 10−3 s, by which point any dif-
ferences between the results would be apparent. This confirms that differences
between the present results and those of Lemaitre et al. [11] are due to differ-
ences in the CF distribution. It also confirms that the evolution equations are
equivalent, and that the independently developed numerical procedures to solve
the evolution equations are also operating in a consistent manner. Whilst the
comparison with previous numerical results is not a full validation, the level of
agreement between independently derived methodologies verifies the approach
that has been used.
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5.2.1. Effect of Shear-Stress Magnitude
To investigate the effect of the magnitude of the shear stress, a study was

undertaken in which the distribution of CF was kept constant but the applied
shear stress was altered through variation of the incident wind speed V . Several
such values were investigated, although only three are reported here as these
are representative of all the cases examined. These are the wind speed that has
been used in the previous cases, V = 11 m/s, and two others V = 7.8m/s and
13.5m/s, which were specifically chosen as lower and upper limits to ensure that
the applied shear stress was 0.5 and 1.5 times that of the original (11 m/s) case
and to ensure that these speeds were well within the typical range identified for
RWIV (' 5 to 15m/s).

The results showed that when only V is altered the resulting film thickness
evolution profile changes only in scale not in distribution; this is due to the
dominance of the shear stress effects in comparison with those of surface ten-
sion for the specific parameters presently under investigation. Should different
parameter values be used, namely values such that the magnitudes of surface-
tension and shear loading are closer, it is expected that such a ‘scaling’ effect
would no longer hold; that, however, is not the subject of the present study.
Figure 15 illustrates both this ‘scaling’ effect and the consistency of the angles θ
at which the rivulets form on the upper and lower surfaces of the cylinder with
varying incident wind speed at a time of t = 6.9 × 10−3 s. It should be noted
that while the assumption that the distribution of CF does not change with V
(and hence Re) may be an idealisation, over the subcritical range of Reynolds
number corresponding to the velocities studied, 0.82 × 105 ≤ Re ≤ 1.43 × 105,
any variation in the distribution of CF is expected to be slight, a point that is
discussed in greater depth in section 5.3.2.

5.3. Pressure and Surface-Tension Loading
Under only pressure P and surface tension γ loading, the results show dis-

tinct similarities to those for the previous case of shear and surface-tension
loading (section 5.2.1). Here again approximately symmetric rivulets form just
windward of the separation points on the top and bottom of a dry cylinder
(see figures 16 and 17). These asymmetries in the rivulets again result from
the reproduction of asymmetries in the applied CP profile, as was true for the
previous shear case, with the temporal distribution of film height again be-
coming symmetric should a symmetric aerodynamic profile be used. In this
instance, however, the locations of these rivulets are marginally windward of
those formed in the shear and surface-tension case (figure 17), closer examina-
tion of which shows that the ‘size’ of the rivulets under the present pressure
loading are approximately the same order of magnitude as those with the previ-
ous shear-loading condition. Given this and the similar rates of rivulet growth,
which can be ascertained from figures 12 and 16 respectively, the indication is
that the effects of pressure and shear loadings are of a similar magnitude under
the present conditions, and, that they are therefore of broadly equal importance.
Here the definition of rivulet ‘size’ has been used loosely, as the differences in
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height and width of the rivulets formed between the shear and pressure load-
ing cases is noticeable. However the amount of additional fluid accumulated
within each (based on the relative cross sectional areas) is approximately the
same, namely ' 1.25 × 10−3 mm2 and ' 1.72 × 10−3 mm2 for the shear and
pressure cases, respectively. The main reason for this variation in shape can be
attributed to the difference in the distribution of the aerodynamic coefficients,
a point that will be discussed in depth in the following section 5.3.1.

For consistency the present results were again compared with those of Lemaitre
et al. [11] under the same loading conditions; as figure 18 shows, the agreement
is again excellent. As with the previous case the minor differences between the
two solutions can again be attributed to differences in the distribution used for
CP in the two schemes, since when the present solver was used to examine both
forms of the governing evolution equation for the same distribution of CP , the
results were identical over the entire time range under investigation.

5.3.1. Effect of Pressure Distribution
To complement the work of section 5.2.1, where the effect of differing mag-

nitudes of applied shear loading but constant aerodynamic coefficient distribu-
tion was investigated, this section will focus on a study undertaken to examine
the opposite situation, namely, how varying the distribution of the aerody-
namic coefficient affects the evolution of the film profile. To achieve this the
original distribution of aerodynamic coefficient determined from Achenbach [1],
CP (Achenbach), was compared to the distribution of CP , for a Reynolds number
of 1×105, given by the formulae in ESDU Data Item [4] which are an empirical
fit based on numerous experiments over a range of Re, henceforth referred to
as CP (baseESDU ). Figure 19 shows these two different distributions for CP as
well as two additional distributions that were created such that the differences
between CP (Achenbach) and CP (baseESDU ) could be investigated. The definitions
for these modified aerodynamic coefficient distributions, which were based upon
CP (baseESDU ), and the reasons for choosing these, are as follows:

1. Scaled ESDU - This ensured that the ‘maximum’ value of CP (in this
case a minimum at peaks θ ' 75◦ and θ ' 285◦) matched that of [1] but
in such a way that the same profile as the base ESDU distribution was
maintained:

CP (ScaledESDU ) =
|maxCP (Achenbach)|
|maxCP (baseESDU )|

× CP (baseESDU ).

This distribution of CP was chosen because it provided an additional case
of the type studied in section 5.2.1 and the means to examine whether it
is the maximum value contained within, or the profile of, the aerodynamic
coefficient distribution CP that has the greater effect on the evolutionary
response.

2. Matched ESDU - This also ensured that the ‘maximum’ value of CP

matched that of [1]. Here, however, rather than ‘scaling’ the distribution,
the equations for CP (baseESDU ) were used as were, but with an artificially
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low minimum pressure coefficient CPM = −1.75, which matched that of
CP (Achenbach). As a result, CP (MatchedESDU ) gives a closer representation
of CP (Achenbach) based on the ESDU formulae, as the frequency contents
of the two distributions are closer. This distribution of CP was chosen
as it provided a means of examining how varying the magnitudes of the
coefficients ak and bk in the truncated Fourier series (16) and hence the
frequency content affected the evolutionary response.

The results for normalised film thickness for the various pressure distribu-
tions CP at a given time, in this instance chosen to correspond to previous
sections at t = 6.9× 10−3 s, are shown in figure 20, and demonstrate that three
distinct differences can be distinguished in the evolutionary response profiles.

First, due to the large variations in the value of CP over a small range
of θ that accompanies the onset of adverse pressure gradient leeward of the
separation points at θ ' 75◦ and θ ' 285◦ in the Achenbach and Matched ESDU
distributions, and the faithful representation of actual experimental data in the
former case, the higher frequency components of the truncated Fourier series
have significantly greater magnitudes than those of the base ESDU and scaled
ESDU distributions. This is reflected in increased magnitudes of coefficients ak

and bk for large values of k in the Achenbach and Matched ESDU distributions.
As a result of these higher frequency components the profiles of evolutionary film
thickness h for the Achenbach and Matched ESDU distributions of CP display
a noticeable wavelength, which corresponds to the highest Fourier component
considered in the truncated series, and is therefore a numerical feature rather
than a fundamental property. However, the effect of this feature is greatly
magnified by the normalisation in figure 20, and is not noticeable in figure 18,
which also presents the film thickness for the Achenbach distribution (at 100
times actual thickness), where the dominant feature is the rivulet located at
approximately the separation points on the dry cylinder. Figure 20 also shows
that such fluctuations also occur in the profiles of evolutionary film thickness
based on the base ESDU and scaled ESDU distributions, but that these are much
less noticeable and the profiles of film thickness are considerably smoother.

Secondly, although a rivulet can be detected with all four distributions of
CP at approximately the separation points of the dry cylinder, there is little
correspondence between the heights or shapes of the rivulets. Those deter-
mined from CP (Achenbach) and CP (MatchedESDU ) are considerably ‘thicker’, (i.e.
h/h0 is larger) and ‘narrower’ (i.e. small angular range of θ), while those from
CP (baseESDU ) and CP (ScaledESDU ) are ‘thinner’ (i.e. h/h0 is smaller), ‘wider’
(i.e. large angular range of θ) and considerably more asymmetric about the
thickest point, in that these display a shallow increase in height windward of
maximum thickness and a sharp decrease leewards. Furthermore although the
maximum value of CP was the same in the CP (Achenbach), CP (MatchedESDU ) and
CP (ScaledESDU ) cases, the evolutions show that this has little bearing on the
maximum height of the film; this point is further emphasised by the differ-
ences in the heights that result from the CP (Achenbach) and CP (MatchedESDU )

distributions, since although these distributions have identical magnitudes and
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similar profiles, the differences in magnitudes of the frequency content of these
coefficients, particularly in the upper frequency range, result in a rivulet of
greater height forming in the CP (Achenbach) case. As such, the evolutionary re-
sponses with different distributions of CP produce different free surface profiles.
Although not reported explicitly due to the absence of a suitable theoretical
distribution of CF , a corresponding result was likewise found under different
distributions of shear loading, CF .

Finally, as was true for the combination of shear and surface-tension loading,
the present two cases of constant profile of CP distributions but varying mag-
nitude (CP (baseESDU ) and CP (ScaledESDU )) showed results that are once again
scaled images of one another throughout the range studied. This again can be
attributed to the dominance of the pressure loading over the surface-tension
loading.

5.3.2. Effect of Varying Reynolds Number
Using the typical ranges of wind velocity (' 5 to 15 m/s) and cable diameter

(100 to 250 mm) given previously, a range of Reynolds number over which RWIV
could occur can be determined, namely 0.33 × 105 < Re < 2.5 × 105, which is
significantly larger than that determined experimentally by Cosentino et al. [3],
namely 0.5 × 105 < Re < 1.5 × 105. In the latter range of Re, however, the
distribution of the pressure coefficient CP determined from the formulae given
in ESDU 80025 is almost independent of Re, assuming the form of CP (baseESDU )

used in section 5.3.1. As such if a constant profile of aerodynamic loading is
assumed and only the velocity is altered then the results at differing Reynolds
numbers are again found to be scale images of each other at any specific instant
in time, as was found to be the case for CF (section 5.2.1) and CP (section
5.3.1).

Turbulence of the incoming flow, surface roughness and changes in the thin
film geometry could, however, all cause a significant reduction in the critical
Reynolds number and thus the flow itself may not always occur in the sub-
critical flow regime as previously assumed. To investigate what effect such a
change in flow regime would have upon the evolutionary response at a given
flow speed, here chosen as V = 11.0 m/s, two additional distributions of CP

and CF from different flow regimes were considered. These were again based
upon experimental data obtained by Achenbach [1] and were taken at a Reynolds
number just below critical of 2.4×105, and at a super-critical 3.6×106. Likewise
the aerodynamic coefficients were again represented by a twenty-term truncated
Fourier series, equation (16). The results show that for both the shear, figure
21, and the pressure-loading cases, figure 22, a variation in flow regime resulted
in a variation in rivulet location and size, with the flow regime corresponding
to a larger Reynolds number typically resulting in a ‘thinner’ rivulet forming
at a greater angle from the incident flow, the location of which was in good
agreement with the positions of the minimum values of the aerodynamic coef-
ficient distributions in all cases. Should a symmetric distribution of CP or CF

be used, then the resulting evolutionary profile and rivulets are again found to
be symmetric with respect to the incident flow. However due to the faithful
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reproduction of slight asymmetries in the experimental data, the evolutionary
profiles shown in figures 21 and 22 produced here are once again slightly asym-
metric, with the rivulet on the lower surface in the super-critical case displaying
the largest deviation.

In practice a variation in Reynolds number is likely to be associated with
a change in both the incident wind speed and the aerodynamic distribution,
although this will likely not be as large as shown here unless it results in a
shift in flow regime. Therefore the two effects outlined here would probably act
in union, the extent of each contribution depending upon the particular case
under examination. What is clear, however, is that in all cases and in under
both the sub-critical and super-critical flow regimes rivulets were again found to
form on both the upper and lower surfaces marginally upstream of the expected
separation point of a dry cylinder at the same Reynolds number.

5.4. Full Loading
The temporal evolution of film thickness for all four loading conditions (pres-

sure, shear, surface tension and gravity) acting simultaneously is shown in figure
23. Similarly to the previous two cases which examined the effect of combina-
tions of shear or pressure with surface-tension loading (sections 5.2 and 5.3
respectively), under full loading conditions two distinct rivulets can be seen to
form. However, in this instance the symmetry about the axis of the incident
wind of the previous cases, should a symmetric profile be used, is lost due to the
effect of gravity. This gravitational loading results in the rivulets that evolve un-
der full loading conditions being thicker on the lower surface and thinner on the
upper surface than those examined previously. This can be quantified by means
of the normalised height of the rivulet h/h0 at the specific time instant used
for comparisons in the previous cases of t = 6.9× 10−3 s. For the upper rivulet
this ratio is hupper/h0 = 1.38 and for the lower rivulet it is hlower/h0 = 1.67,
where hupper and hlower are the heights of the upper and lower rivulet at the
point of maximum thickness, respectively, which is not fixed in θ. Figure 24
demonstrates this temporal increase in height of both rivulets while also high-
lighting that the lower rivulet grows faster than the upper rivulet due to the
effect of gravity, as would be expected. The latter is achieved by plotting the
ratio between the film thickness of the lower and upper rivulets (hlower/hupper).
Furthermore, while the point of maximum thickness of the lower rivulet moves
leeward from the point where it occurred under only pressure and surface-tension
loading (section 5.3), specifically from θ ' 288◦ to θ ' 282◦, the thinner upper
rivulet moves windward from θ ' 66◦ to θ ' 59◦. This simple result agrees
with intuitive expectations as to the effects of gravity on the system, and in so
doing increases confidence in the modelling approach.

For consistency these results were again compared with those of Lemaitre et
al. [11] under the same loading conditions; as figure 25 shows, the agreement is
again excellent. As with the previous cases the minor differences between the
two solutions can be attributed to a variation in the distribution used for CP

and CF in the two schemes, since when the present solver was used to examine
both forms of the governing evolution equation for the same distribution of CP
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and CF (in particular, those determined in section 3.1) the results were identical
over the entire time range under investigation. Although a comparison has been
made with the work of Lemaitre et al. [11] for each of the loading combinations
presently examined, due to the complexity of the distributions of aerodynamic
coefficient used, analytical results are not available to verify against and hence
the present data has been verified against the only other computational data
available. As the two numerical solutions have been obtained independently and
the results have been generated by two separate solvers it allows a greater degree
of confidence in both sets of results and the method used. That said, the present
work also highlights several new features for the problems investigated, notably
presenting both the temporal evolution of the rivulet and profiles at specific
time instants, and examining how the magnitude of loading, distributions of
aerodynamic coefficients and Reynolds number affect the evolutionary response.

Finally figure 26 displays the evolutionary profiles from the present solver
for the rivulets formed under the three loading cases, shear and surface tension,
pressure and surface tension, and full loading at t = 6.9 × 10−3s. This high-
lights, in a single figure, the differences in forms and locations of the rivulets
discussed in the previous sections, with the rivulets forming under shear loading
being ‘wider’ and ‘thinner’ than those from pressure loading while forming at
greater angles from the incident flow, albeit in both cases still at approximately
the separation points of the dry cylinder. Furthermore the slight asymmetries
in these results, which result from those of the aerodynamic coefficients, are put
into context when compared to the effect of gravity, which truly results in an
asymmetric film height distribution about the incident flow, resulting in a wind-
ward movement of the upper rivulet and a leeward movement and thickening of
the lower rivulet.

Overall, therefore, by describing the formation and evolution of rivulets in
the approximate locations highlighted by previous studies [10, 8, 13] as critical
to the RWIV mechanism, the present study establishes that conditions required
by proposed mechanisms, such as galloping [13], could indeed occur due to
the presence of a thin film of fluid on the outer surface of a cylinder in an
airflow. The confirmation of this result is therefore significant in addressing the
overall RWIV problem. The next step, namely considering the coupling of the
present numerical method with an aerodynamic solver should hopefully further
this process in addition to investigating what role the temporal evolution of
geometry has on the overall system response.

6. Conclusions

A numerical model for the evolution of a thin film of liquid on the outer
surface of a stationary circular cylinder under the combined effects of pressure,
shear, surface tension and gravity has been presented. The pseudo-spectral
solver developed to solve the governing evolution equation numerically has been
demonstrated to be both self-consistent and to show excellent agreement with
previous analytical and computational investigations, for all the verification
studies undertaken.
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For the shear and surface-tension loading, and the pressure and surface-
tension loading cases, two symmetric rivulets were found to form just windward
of the separation points of a dry cylinder, and a comparison between these two
loadings revealed that they have a similar effect on the film-thickness response.
Under full loading conditions, although two rivulets were again found to form,
these were asymmetric about the horizontal axis of incident wind and of different
height, due to the effect of gravity.

Through variation of the magnitude of the applied shear or pressure loading,
with a constant distribution of aerodynamic coefficient CF or CP maintained,
it has been shown that the evolutionary responses of film thickness retain the
same profile but have different magnitude, and that this scaling is proportional
to the magnitude of incident loading. This can be attributed to the dominance
of the loading due to the external aerodynamic field over that of the surface
tension for the range of parameters investigated.

In contrast, changing the distribution of aerodynamic coefficients CF and
CP markedly altered the evolutionary response of film thickness. Although
for all the cases studied, two rivulets did form, the sizes and profiles of these
were significantly different from one another. As a result the distribution of
aerodynamic loading was determined to have a significantly greater effect on
the evolution response of film thickness than the magnitude of loading for the
cases examined.

Should a variation in Reynolds number result from simply a change in mag-
nitude of incident velocity for a constant distribution of aerodynamic coefficient
then the profile of film thickness again results in the formation of scale images.
However, should the change in Re result in a varying distribution of CF or CP ,
such as would happen with a change in flow regime, then the evolutionary profile
shows a variation in both the location and the form of the rivulets, although in
both the sub- and super-critical regimes rivulets were found to form marginally
upstream of the separation points of a dry cylinder at the same Reynolds num-
ber. Capturing numerically the formation and evolution of rivulets in the ap-
proximate locations highlighted by previous studies is a significant result in the
overall RWIV problem.
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8. Appendix: Analytical Solution for Constant Shear

The evolution equation for the free surface profile h(θ, t) is

ht +
[
− 1

3µR

(
ρg cos θ − γ

R3
(h + hθθ)θ +

Pθ

R

)
h3 +

Th2

2µR

]

θ

= 0. (A-23)
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If surface tension, gravity and the external pressure gradient are neglected then
this becomes

ht +
(

Th2

2µR

)

θ

= 0, (A-24)

a first order partial differential equation for h(θ, t). For simplicity we take T to
be a constant; then (A-24) becomes

ht +
T

µR
hhθ = 0. (A-25)

The characteristic equations associated with equation (A-25) are

dh

dt
= 0,

dθ

dt
=

Th

µR
, (A-26)

whose solutions are

h = constant, θ − Th

µR
t = constant. (A-27)

Therefore the general solution h(θ, t) of (A-25) satisfying the initial condition
h(θ, 0) = h0(θ)

(
where h0(·) is some prescribed non-negative function satisfying

h0(θ + 2π) = h0(θ)
)

is given implicitly by

h = h0

(
θ − Th

µR
t

)
. (A-28)

For example, if h0(θ) = H(1 − a cos(nθ)) (with |a| < 1, n = 1, 2, 3, . . . )
then (A-28) gives the implicit equation

h

H
= 1− a cos

[
n

(
θ − Th

µR
t

)]
(A-29)

determining h as a function of θ and t.
We note that equation (A-28) predicts that h stays non-negative for all t

and θ (as expected on physical grounds). Also if h0 = 0 at some station θ = θ0

then h(θ0, t) = 0 for all t, that is, any “three-phase contact line” does not move.
The solution (A-28) will become invalid if the wavelike profile of the free sur-

face ‘breaks’ at some instant, that is, if ∂h/∂θ becomes infinite. Differentiating
(A-28) we obtain

∂h

∂θ
=

h′0(ξ)

1 + h′0(ξ)
T

µR
t

, (A-30)

where
ξ = θ − Th

µR
t; (A-31)
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Thus the free surface will ‘break’ at the instant when 1+h′0(ξ)Tt/µR first takes
the value zero, that is, at the instant t = ts defined by

ts =
µR

T
min

ξ

(
− 1

h′0(ξ)

)
, (A-32)

provided that ts is positive. If ξ = ξs is the value of ξ at which this minimum
occurs then by (A-28) and (A-31) the shock occurs at height h = h0(ξs) (= hs,
say) at position θ = θs given by

θs = ξs +
Ths

µR
ts (mod 2π). (A-33)

For example, if h0(θ) = H(1 − a cos(nθ)) (with |a| < 1, n = 1, 2, 3, . . . )
then h′0(ξ) = nHa sin(nξ), so that (A-32) gives

ts =
µR

nHaT
min

ξ

(
− 1

sin(nξ)

)
(ts > 0); (A-34)

therefore

ξs =
3π

2n
, ts =

µR

nHaT
, hs = H, θs =

3π

2n
+

1
na

(mod 2π). (A-35)
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Figure 1: A thin fluid film on a horizontal cylinder.
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with the number of terms, n, in the truncated Fourier series representation of the pressure
coefficient CP .

27



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  60  120  180  240  300  360

A
er

od
yn

am
ic

 C
oe

ffi
ci

en
t, 

C
P
 &

 C
F

Angle Clockwise from Windward Horizontal, θ, (Degrees)

Fourier Series CP
Fourier Series CF
Experimental CP
Experimental CF

Figure 3: Aerodynamic coefficients CP and CF used in the numerical calculations and those
measured experimentally by Achenbach [1] at Re = 1× 105.

28



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

104 105 106 107 108 109 1010 1011 1012

F
in

al
 r

es
ol

ve
d 

tim
e,

 τ
m

ax

Bond Number, Bo

Figure 4: Final resolved time, τmax as a function of Bo.
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Figure 11: Comparison of normalised film heights of water, benzene and mercury as functions
of angle θ at reduced time τ = 0.4.
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Figure 12: Numerical prediction of the temporal evolution of film height in real time, under
shear and surface-tension effects only.
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Initial film height, h0(θ)
Lemaitre et al.(2007)

Present

Figure 13: Comparison of present numerical results with the results of Lemaitre et al. [11]
for variation of film height (100×actual) at t = 6.9 × 10−3s, under the effects of shear and
surface tension, where the incident wind acts from the left.
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Figure 14: Comparison of normalised film height under the effects of shear and surface tension
from present numerical solver for evolution equation (15) and equation (17) of Lemaitre et
al. [11], using identical CF distribution, at t = 34.0× 10−3s.
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Figure 15: Effect of varying shear-loading value T through variation of the incident wind
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Figure 16: Numerical prediction of the temporal evolution of film height in real time, under
pressure and surface-tension effects only.
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Initial film height, h0(θ)
Pressure & Surface Tension Loading

Shear & Surface Tension Loading

Figure 17: Comparison of film height (100×actual) of present results under shear and surface-
tension loading with those under pressure and surface-tension loading at t = 6.9 × 10−3 s,
where the incident wind acts from the left.
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Initial film height, h0(θ)
Lemaitre et al. (2007)

Present

Figure 18: Comparison of present numerical results with result of Lemaitre et al. [11] for
variation of film height (100×actual) at t = 6.9 × 10−3s, under the effects of pressure and
surface tension, where the incident wind acts from the left.
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Figure 19: Profiles of the four distributions of CP used, namely that used by Achenbach [1],
base ESDU, scaled ESDU and matched ESDU.
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Figure 20: Comparison of the effect that various distributions of CP have on the normalised
film height profile, at t = 6.9× 10−3 s, under pressure and surface-tension loading.
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Figure 21: Effect of varying Reynolds number through change of flow regime on the variation
of normalised film height with angle from windward horizontal at t = 6.9× 10−3 s, for shear
and surface-tension loading.
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Figure 22: Effect of varying Reynolds number through change of flow regime on the variation
of normalised film height with angle from windward horizontal at t = 6.9×10−3 s, for pressure
and surface-tension loading.
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Figure 23: Numerical prediction of temporal evolution in real time of film height under full
loading conditions.
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Figure 24: Early temporal evolution of normalised film height of upper and lower rivulets and
ratio between these.
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Initial film height, h0(θ)
Lemaitre et al. (2007)

Present

Figure 25: Comparison of present numerical results with result of Lemaitre et al. [11] for
variation of film height (100×actual) at t = 6.9× 10−3s under full loading conditions, where
the incident wind acts from the left.

50



Shear & Surface Tension Loading
Pressure & Surface Tension Loading

Full Loading

Figure 26: Comparison of present numerical results under three loading conditions for vari-
ation of film height (100×actual) at t = 6.9 × 10−3s, where the incident wind acts from the
left.
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Number of Points, N . 32 64 128 256 512
CPU time, s. 3.108 4.632 9.445 18.137 36.222
Final resolved time τmax. 0.487 0.485 0.479 0.448 0.227

Table 1: Summary of the computational convergence study.
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Parameter Value
Cylinder Radius, R 0.08m
Initial film height, h0 5× 10−4 m
Gravity, g 9.806m/s2

Density of water, ρ 1000 kg/m3

Dynamic viscosity of water, µ 1.002× 10−3 Ns/m2

Surface tension of water, γ 72× 10−3 N/m
Density of air, ρ∗ 1.19 kg/m3

Dynamic viscosity of air, µ∗ 1.82× 10−5 Ns/m
Incident Wind Speed, V 11.0m/s

Table 2: Values of the standard parameters used in the numerical calculations.
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Property Water Benzene Mercury
Density, ρ, kg/m3 1000 880 13600
Dynamic viscosity, µ, Ns/m2 1.002× 10−3 0.656× 10−3 1.55× 10−3

Surface tension, γ, N/m 0.072 0.039 0.51
Bond Number Bo 1.4× 107 3.1× 107 2.7× 107

Gravity Number G 4.1× 105 7.4× 105 3.2× 107

Table 3: Parameters and fluid properties of water, benzene and mercury at 20◦C.
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