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Sail Design

• A solar sail is a spacecraft without an
engine, and therefore needs no fuel. It is
pushed along by the pressure of photons
from the sun hitting the sail.

• Solar sails are typically large square
sheets of a highly reflective film supported
by booms, although other designs (discs,
blades) are popular.

• The material of the sail must be very
lightweight and thin, of the order of a
couple of microns (one thousandth the
width of a sheet of paper), and very large,
the order of (50m)×(50m).
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Sail Design
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Practical Goal

• Solar sails provide unique families of new orbits (non-Keplerian
orbits) with rich properties.

• These new orbits are associated with the artificial libration points.

• The artificial equilibria have potential applications for future space
physics and Earth observation missions.
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System Model: Hybrid Sail
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Figure 1: (a) Schematic geometry of the Hybrid Sail in the Earth-Moon
restricted three-body problem; (b) Angle γ between the Hybrid Sail
surface n and the Sun-line direction S, and SEP thrust vector direction
m.
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Equations of Motion of the Hybrid Sail

• The equations of motion of the hybrid sail in a rotating coordinate
frame are given by

d2r
dt2

+ 2ω × dr
dt

+∇U(r) = aS + aSEP , (1)

where

U(r) = −
[

1
2
|ω × r|2 +

1− µ
r1

+
µ

r2

]
,

aS = a0(S · n)2n,

aSEP = aSEPm,

n =
[

cos(γ) cos(ω?t) − cos(γ) sin(ω?t) sin(γ)
]T
,

S =
[

cos(ω?t) − sin(ω?t) 0
]T
,

• Because the solar radiation pressure force can never be directed
sunward, the sail attitude is constrained such that S · n ≥ 0.
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Linearized System

The equations for the hybrid sail can be written as

d2δr
dt2

+ 2ω × dδr
dt

+∇U(rL + δr) = aS(rL + δr) + aSEP (rL + δr), (2)
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Linearized System

The equations for the hybrid sail can be written as

d2δr
dt2

+ 2ω × dδr
dt

+∇U(rL + δr) = aS(rL + δr) + aSEP (rL + δr), (2)

and retaining only the first-order term in δr = [δx, δy, δy]T in a
Taylor-series expansion, the gradient of the potential and the
acceleration can be expressed as

∇U(rL + δr) = ∇U(rL) +
∂∇U(r)
∂r

∣∣∣∣
r=rL

δr +O(δr2), (3)

aS(rL + δr) = aS(rL) +
∂aS(r)
∂r

∣∣∣∣
r=rL

δr +O(δr2), (4)

aSEP (rL + δr) = aSEP (rL) +
∂aSEP (r)

∂r

∣∣∣∣
r=rL

δr +O(δr2). (5)
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Linearized System

It is assumed that ∇U(rL) = 0, and the accelerations aS and aSEP are
constant with respect to the small displacement δr, so that

∂aS(r)
∂r

∣∣∣∣
r=rL

= 0,

∂aSEP (r)
∂r

∣∣∣∣
r=rL

= 0.

The linear variational system associated with the collinear libration
points at rL can be determined through a Taylor series expansion by
substituting Eqs. (3), (4) and (5) into (2)
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Linearized System

It is assumed that ∇U(rL) = 0, and the accelerations aS and aSEP are
constant with respect to the small displacement δr, so that

∂aS(r)
∂r

∣∣∣∣
r=rL

= 0,

∂aSEP (r)
∂r

∣∣∣∣
r=rL

= 0.

The linear variational system associated with the collinear libration
points at rL can be determined through a Taylor series expansion by
substituting Eqs. (3), (4) and (5) into (2)

d2δr
dt2

+ 2ω × dδr
dt
−Kδr = aS(rL) + aSEP (rL), (6)

where the matrix K is defined as

K = −
[
∂∇U(r)
∂r

∣∣∣∣
r=rL

]
. (7)
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Linearized System

Using matrix notation the linearized equation about the libration point
(Eq. (6)) can be represented by the inhomogeneous linear system
Ẋ = AX + b(t), where the state vector X = (δr, δṙ)T , and b(t) is a 6× 1
vector, which represents the solar sail acceleration.
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Linearized System

Using matrix notation the linearized equation about the libration point
(Eq. (6)) can be represented by the inhomogeneous linear system
Ẋ = AX + b(t), where the state vector X = (δr, δṙ)T , and b(t) is a 6× 1
vector, which represents the solar sail acceleration.

The Jacobian matrix A has the general form

A =
(

03 I3
K Ω

)
, (8)

where I3 is a identity matrix, and

Ω =

 0 2 0
−2 0 0

0 0 0

 . (9)
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Linearized System

This yields the linearized nondimensional equations of motion in
component form of a solar sail near the collinear libration points

ξ̈ − 2η̇ − Uoxxξ = aξ + aSEPξ, (10)

η̈ + 2ξ̇ − Uoyyη = aη + aSEPη, (11)

ζ̈ − Uozzζ = aζ + aSEPζ . (12)
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Linearized System

This yields the linearized nondimensional equations of motion in
component form of a solar sail near the collinear libration points

ξ̈ − 2η̇ − Uoxxξ = aξ + aSEPξ, (10)

η̈ + 2ξ̇ − Uoyyη = aη + aSEPη, (11)

ζ̈ − Uozzζ = aζ + aSEPζ . (12)

The solar sail acceleration components are given by

aξ = a0 cos(ω?t) cos3(γ),

aη = −a0 sin(ω?t) cos3(γ),

aζ = a0 cos2(γ) sin(γ).

13



Outline

Solar Sails

• Sail Design - Practical Goal

Earth-Moon Restricted Three-Body Problem

• System Model - Equations of Motion of the Hybrid Sail

• Linearized System

• Conditions for the Existence of Displaced Orbits

Feedback Linearizing Approach to the Tracking in Nonlinear Systems

• Objectives

• Stabilization and Tracking of Feedback Linearizable Systems

Evaluation of Hybrid Sail Performance - Propellant Usage

14



Conditions for the Existence of Displaced Orbits

By taking aSEP = 0 (pure sail at linear order), Eqs. (10) - (12) have a
simple periodic solution with a constant out-of-plane displacement of
the form

ξ(t) = ξ0 cos(ω?t), (13)

η(t) = η0 sin(ω?t), (14)

ζ(t) = ζ0. (15)

By inserting equations (13) and (14) in the differential equations (10)
and (11), we obtain the linear system in ξ0 and η0,

(
Uoxx − ω2

?

)
ξ0 − 2ω?η0 = a0 cos3(γ),

−2ω?ξ0 +
(
Uoyy − ω2

?

)
η0 = −a0 cos3(γ).

(16)
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Conditions for the Existence of Displaced Orbits

Then the amplitudes ξ0 and η0 are given by

ξ0 = a0

(
Uoyy − ω2

? − 2ω?
)

cos3(γ)(
Uoxx − ω2

?

)(
Uoyy − ω2

?

)
− 4ω2

?

, (17)

η0 = a0

(
− Uoxx + ω2

? + 2ω?
)

cos3(γ)(
Uoxx − ω2

?

)(
Uoyy − ω2

?

)
− 4ω2

?

, (18)

and we have the equality

ξ0
η0

=
ω2
? + 2ω? − Uoyy

−ω2
? − 2ω? + Uoxx

. (19)

Then with the condition given by Eq. (19), Eqs. (13)-(15) will be used
as a reference trajectory.
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Conditions for the Existence of Displaced Orbits

By applying a Laplace transform, the uncoupled out-of-plane ζ-motion
defined by the equation (12) can be written as

ζ(t) = ζ0 cos(ωζt) + ζ̇0|Uozz|−1/2 sin(ωζt)

+a0 cos2(γ) sin(γ)|Uozz|−1[U(t)− cos(ωζt)],

= U(t)a0 cos2(γ) sin(γ)|Uozz|−1 + ζ̇0|Uozz|−1/2 sin(ωζt) (20)

+ cos(ωζt)[ζ0 − a0 cos2(γ) sin(γ)|Uozz|−1],

where the nondimensional frequency is defined as ωζ = |Uozz|1/2 and
U(t) is the unit step function.
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Conditions for the Existence of Displaced Orbits

By applying a Laplace transform, the uncoupled out-of-plane ζ-motion
defined by the equation (12) can be written as

ζ(t) = ζ0 cos(ωζt) + ζ̇0|Uozz|−1/2 sin(ωζt)

+a0 cos2(γ) sin(γ)|Uozz|−1[U(t)− cos(ωζt)],

= U(t)a0 cos2(γ) sin(γ)|Uozz|−1 + ζ̇0|Uozz|−1/2 sin(ωζt) (20)

+ cos(ωζt)[ζ0 − a0 cos2(γ) sin(γ)|Uozz|−1],

where the nondimensional frequency is defined as ωζ = |Uozz|1/2 and
U(t) is the unit step function.

Specifically for the choice of the initial data ζ̇0 = 0, the equation (20)
can be more conveniently expressed as

ζ(t) = U(t)a0 cos2(γ) sin(γ)|Uozz|−1 (21)

+ cos(ωζt)[ζ0 − a0 cos2(γ) sin(γ)|Uozz|−1].
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Conditions for the Existence of Displaced Orbits

The solution can be made to contain only the periodic oscillatory
modes at an out-of-plane distance

ζ0 = a0 cos2(γ) sin(γ)|Uozz|−1. (22)
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Conditions for the Existence of Displaced Orbits

The solution can be made to contain only the periodic oscillatory
modes at an out-of-plane distance

ζ0 = a0 cos2(γ) sin(γ)|Uozz|−1. (22)

Furthermore, the out-of-plane distance can be maximized by an
optimal choice of the sail pitch angle determined by

d

dγ
cos2(γ) sin(γ)

∣∣∣∣
γ=γ?

= 0,

γ? = 35.264◦. (23)
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Objectives

To develop a feedback linearization scheme, the motion of the hybrid
solar sail moving in the CRTBP is separated into linear and nonlinear
components, such that

ξ̈ = fξNon−Linear + fξLinear + aξ + uξ, (24)

η̈ = fηNon−Linear + fηLinear + aη + uη, (25)

ζ̈ = fζNon−Linear + fζLinear + aζ + uζ, (26)

where the f functions are defined as the linear and the nonlinear terms

20



Objectives

fξNon−Linear = −(1− µ)
(xLi + ξ) + µ

r31
− µ(xLi + ξ)− 1 + µ

r32
,

fξLinear = 2η̇ + (xLi + ξ),

fηNon−Linear = −
(

1− µ
r31

+
µ

r32

)
η,

fηLinear = −2ξ̇ + η,

fζNon−Linear = −
(

1− µ
r31

+
µ

r32

)
ζ,

fζLinear = 0,

with

r1 =
√

((xLi + ξ) + µ)2 + η2 + ζ2,

r2 =
√

((xLi + ξ)− 1 + µ)2 + η2 + ζ2.
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Objectives

We then select the SEP control u(t) such that

u(t) =

 uξ
uη
uζ

 = U(t) + ũ(t), (27)

where

U(t) = −



(xL2 + ξ)− (1− µ)
(xL2

+ξ)+µ

r31
− µ(xL2

+ξ)−1+µ

r32
− Uoxxξ

−
(

1−µ
r31

+ µ
r32

)
η − Uoyyη

−
(

1−µ
r31

+ µ
r32

)
ζ − Uozzζ


(28)

is the cancelling term and ũ(t) the stabilizing term.
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Objectives

The motion of the hybrid solar sail in the CRTBP is then described by
the equations

ξ̈ = 2η̇ + Uoxxξ + a0 cos(ω?t) cos3(γ) + ũξ, (29)

η̈ = −2ξ̇ + Uoyyη − a0 sin(ω?t) cos3(γ) + ũη, (30)

ζ̈ = Uozzζ + a0 cos2(γ) sin(γ) + ũζ. (31)
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Stabilization

Let us consider nonlinear system described by

ẍ = f(x, ẋ) + u, (32)

where x ∈ R3 is the position. Let e(t) = x(t)− xref(t) denote the
position error relative to some reference solution, where the reference
trajectory

xref(t) =
[
ξref ηref ζref

]T (33)

is given by the analytical solution

ξref(t) = ξ0 cos(ω?t),

ηref(t) = η0 sin(ω?t),

ζref(t) = ζ0.

25



Stabilization

We then differentiate e(t) until the control appears so that

e(t) = x(t)− xref(t), (34)

ė(t) = ẋ(t)− ẋref(t), (35)

ë(t) = ẍ(t)− ẍref(t), (36)

= f(x, ẋ) + u− ẍref(t),

= −λ1ė− λ2e,
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Stabilization

We then differentiate e(t) until the control appears so that

e(t) = x(t)− xref(t), (34)

ė(t) = ẋ(t)− ẋref(t), (35)

ë(t) = ẍ(t)− ẍref(t), (36)

= f(x, ẋ) + u− ẍref(t),

= −λ1ė− λ2e,

and so, we have

u(t) = −f(x, ẋ) + ẍref(t)− λ1ė− λ2e. (37)

26



Trajectory Tracking

• Consider the system given by Eq. (32), where our objective is to
make the output x ∈ R3 track a desired trajectory given by the
reference trajectory xref ∈ R3 while keeping the whole position
bounded.

• Therefore, we want to find a control law for the input ũ ∈ R3 such
that, starting from any initial position in a domain D ⊂ R3, the
tracking error e(t) = x(t)− xref(t) goes to zero, while the whole
position x ∈ R3 remains bounded.
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bounded.

• Therefore, we want to find a control law for the input ũ ∈ R3 such
that, starting from any initial position in a domain D ⊂ R3, the
tracking error e(t) = x(t)− xref(t) goes to zero, while the whole
position x ∈ R3 remains bounded.

• Hence, asymtotic tracking will be achieved if we design a state
feedback control law to ensure that e(t) is bounded and converges
to zero as t tends to infinity.
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Trajectory Tracking

• Consider the system given by Eq. (32), where our objective is to
make the output x ∈ R3 track a desired trajectory given by the
reference trajectory xref ∈ R3 while keeping the whole position
bounded.

• Therefore, we want to find a control law for the input ũ ∈ R3 such
that, starting from any initial position in a domain D ⊂ R3, the
tracking error e(t) = x(t)− xref(t) goes to zero, while the whole
position x ∈ R3 remains bounded.

• Hence, asymtotic tracking will be achieved if we design a state
feedback control law to ensure that e(t) is bounded and converges
to zero as t tends to infinity.

Thus, the control law
ũ = −λ1ė− λ2e (38)

yields the tracking error equation

ë + λ1ė + λ2e = 0. (39)
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Evaluation of Hybrid Sail Performance

• The magnitude of the total control effort appears in Figure 2. Thus,
the control acceleration effort U required to track the reference orbit
while rejecting the nonlinearities varies up to 0.004 (0.012 mm/s2) for
the orbit about L1 and 0.005 (0.014 mm/s2) for the orbit about the L2

point.

• The control accelerations are continous smooth signals.
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Figure 2: (a) Magnitude of the total control effort about the L1 point; (b)
Magnitude of the total control effort about the L2 point.

29



Evaluation of Hybrid Sail Performance

• The acceleration derived from the solar sail (denoted by aξ, aη, aζ) is
plotted in terms of components for one-month orbits in Figure 3 (a)
about L1, Figure 4 (a) about L2, and the SEP acceleration
components appears in Figure 3 (b) about L1, Figure 4 (b) about L2

• The control acceleration effort derived from the thruster (denoted by
Uξ, Uη, Uζ) is order of 10−3 - 10−4, while the acceleration derived
from the solar sail is over approximately 10−2.
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Evaluation of Hybrid Sail Performance
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Figure 3: (a) Acceleration derived from the solar sail about the L1 point;
(b) Acceleration derived from the thruster about the L1 point.
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Evaluation of Hybrid Sail Performance

• The small control acceleration from the SEP thruster is then applied
to ensure that the displacement of the periodic orbit is constant. The
solar sail provides a constant out-of-plane force.
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Evaluation of Hybrid Sail Performance
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Figure 4: (a) Acceleration derived from the solar sail about the L2 point;
(b) Acceleration derived from the thruster about the L2 point.

33



Evaluation of Hybrid Sail Performance

• Figure 5 (a) (resp. Figure 5 (b)) illustrates the position error
components, denoted by eξ, eη, eζ under the nonlinear control and
the SEP thruster around L1 (resp. L2).

• These Figures show that the motion is bounded and periodic. This
observation implies that the augmented thrust acceleration ensures
a constant displacement orbit.
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Evaluation of Hybrid Sail Performance
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Figure 5: (a) Position error components about the L1 point
with e(0) = (−0.00011,−0.0010, 0.00045)T (critically damped
motion); (b) Position errors components about the L2 point with
e(0) = (0.000073,−0.0014, 0.00045)T (critically damped motion).
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Evaluation of Hybrid Sail Performance
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Figure 6: Orbit resulting from tracking the reference orbit using the
nonlinear control and SEP thruster: (a) Above L1; (b) Above L2.
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Propellant Usage

• Assume a specific impulse of Isp = 3000 sec and an initial mass of
mi = 500 kg, we have the average ∆V per orbit of approximately 23
m/s.

• Then, the total ∆V per orbit over 5 years is 1536 m/s. The
consumed propellant mass is then mprop = 25 kg.
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Applications

• A hybrid concept for displaced periodic orbits in the Earth-Moon
system has been developed.

• A feedback linearization was used to perform stabilization and
trajectory tracking for nonlinear systems.

• The augmented thrust acceleration is than applied to ensure a
constant displacement periodic orbit, which provides key
advantages for lunar polar telecommunications.
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trajectory tracking for nonlinear systems.

• The augmented thrust acceleration is than applied to ensure a
constant displacement periodic orbit, which provides key
advantages for lunar polar telecommunications.

• It was found that periodic orbits can be developed at linear order,
that are displaced above the plane of the restricted three-body
problem.

• This new family of orbits have the property of ensuring visibility of
both the lunar far-side and the equatorial regions of the Earth, and
can enable new ways of performing lunar telecommunications.
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