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Sail Design

e A solar sail is a spacecraft without an
engine, and therefore needs no fuel. It is
pushed along by the pressure of photons
from the sun hitting the sail.

e Solar sails are typically large square
sheets of a highly reflective film supported
by booms, although other designs (discs,
blades) are popular.

e The material of the sail must be very
lightweight and thin, of the order of a
couple of microns (one thousandth the
width of a sheet of paper), and very large,
the order of (50m ) x(50m).
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Practical Goal

e Solar sails provide (non-Keplerian
orbits) with rich properties.

e These new orbits are associated with the artificial libration points.

e The artificial equilibria have potential applications for future space
physics and Earth observation missions.
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System Model: Hybrid Sail
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Figure 1: (a) Schematic geometry of the Hybrid Sail in the Earth-Moon

restricted three-body problem; (b) Angle + between the Hybrid Salil
surface n and the Sun-line direction S, and SEP thrust vector direction

m.



Equations of Motion of the Hybrid Sail

e The equations of motion of the hybrid sail in a

are given by
d2r+2 xdr+VU(r) as+a
- W e j—
D dt S SEP,
where
1 o  l—p p
rn = —|= r
U() 2|w>< “" r _|_7“2,
as = ao(S-n7°n,
dsgp = asgph,
n = | cos(y)cos(wit) —cos(y)sin(w,t) sin(y) }Ta
S = | cos(wit) —sin(wit) 0 }T,

e Because the solar radiation pressure force can never be directed
sunward, the sail attitude is constrained such that S- n > 0.



Outline

Solar Sails

e Sail Design - Practical Goal

Earth-Moon Restricted Three-Body Problem

e System Model - Equations of Motion of the Hybrid Sail
e Linearized System

e Conditions for the Existence of Displaced Orbits

Feedback Linearizing Approach to the Tracking in Nonlinear Systems

e Objectives

e Stabilization and Tracking of Feedback Linearizable Systems

Evaluation of Hybrid Sail Performance - Propellant Usage



Linearized System

The can be written as

d?5r dér
—a T 2w X — VU (ry +0r) = as(r;, + 6r) + aspp(r, +0r), (2)



Linearized System

The can be written as

dor dor
pry + 2w X — + VU(rp 4+ 0r) = as(rp + 6r) + asgp(rp + 0r),

and retaining only the first-order term in 6r = [z, dy, dy]! in a
Taylor-series expansion, the gradient of the potential and the
acceleration can be expressed as

VU(ry +6r = VU(rL)+aVU(r) Sr+0(6r),
or |prr,
oag(r
as(rp +0or) = ag(rp)+ s() 5r+0(5r2),
or r-r,
oa r
aSEp(rL+5r) = aSEp(rL)+ ng() 5r+0(5r2)
r=r



Linearized System

It is assumed that VU (r) = 0, and the accelerations as and asgp are
constant with respect to the small displacement Jr, so that

oas(r) _ 0
or |rr, ’
dasgp(r _ 0
or r—r, '

The linear variational system associated with the
at r;, can be determined through a Taylor series expansion by
substituting Egs. (3), (4) and (5) into (2)
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It is assumed that VU (r) = 0, and the accelerations as and asgp are
constant with respect to the small displacement Jr, so that

Oas(r) _ 0
or |rr, ’
dasgp(r -
or r—r, '

The linear variational system associated with the
at r;, can be determined through a Taylor series expansion by
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dor dor
W"‘Qw XE—K(Sr:aS(rL)_FaSEP(rL)? (6)

where the matrix K is defined as

ovU(r)
or

K =—

] | (7)
r=r;



Linearized System

Using matrix notation the linearized equation about the libration point
(Eqg. (6)) can be represented by the inhomogeneous linear system

X = AX + b(t), where the state vector X = (6r,6r), and b(t)isa 6 x 1
vector, which represents the solar sail acceleration.



Linearized System

Using matrix notation the linearized equation about the libration point
(EQ. (6)) can be represented by the inhomogeneous linear system

X = AX + b(t), where the state vector X = (6r,6r), and b(t)isa 6 x 1
vector, which represents the solar sail acceleration.

The Jacobian matrix A has the general form

Os I
a-( g ®

where I3 is a identity matrix, and



Linearized System

This yields the
component form of a solar sail near the

6_27;]_U$0$€ —
i+ 26 —USn =
C_U,;zC —

equations of motion in

a¢ + ASEP;;

ac + aSEPC-

(10)

(11)
(12)



Linearized System

This yields the equations of motion in
component form of a solar sail near the

§-2n—-Uyg{ = aec+ ASEP;;
H+26—Uon = ay+asep,
¢—U2C = ac+asep,.

The solar sail acceleration components are given by

alg = QapCOS <W*t> COSB (7)7
ap = —apsin(wyt) cos® (7);

ac = agcos’(y)sin(y).

(10)

(11)
(12)
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Conditions for the Existence of Displaced Orbits

By taking asgp = 0 (pure sail at linear order), Egs. (10) - (12) have a
simple periodic solution with a constant out-of-plane displacement of
the form

£(t) = &ocos(wst), (13)
ﬂ(t) = 7o Sin(”*t)a (14)
¢(t) = <o (15)

By inserting equations (13) and (14) in the differential equations (10)
and (11), we obtain the linear system in &, and 7y,

(Ug?x - Wf)fo — 2w,mo = agcos’(7y),
—2w, &0 + (Ugj’y — wf) no = —ag cos> (7).



Conditions for the Existence of Displaced Orbits

Then the amplitudes ¢y and g are given by

o 2 3
(Uyy —wi — 2w*> cos”(7)
(ng — w,%) (Ugy — w3> — 4w3’
( — U2, +w?+ 2w*> cos> ()

(ng — wz) (Ugy — wf) — 4w3’

fozao

o = Qg

and we have the equality

2 16)
@ _ w*2—|— 2W, — Uyy | (19)
To —Wy — 2(,0* T Ua(:)x

Then with the condition given by Eq. (19), Eqgs. (13)-(15) will be used
as a reference trajectory.



Conditions for the Existence of Displaced Orbits

By applying a Laplace transform, the uncoupled out-of-plane {-motion
defined by the equation (12) can be written as

C(t) = Cocos(wet) + GolUZ| 2 sin(wet)
+ag cos® () sin(7)|UZ,| 7 [U(¢) — cos(wet)],
= U(t)agcos?(y)sin(y)|U2,| 7t + Co|U? \_1/2sin(w<t) (20)
+ cos(wet)[Co — ag cos?(v) sin(y)|UZ, |71,

where the nondimensional frequency is defined as w; = |U?,|'/? and

U(t) is the unit step function.

ol
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ol

Specifically for the choice of the initial data ¢, = 0, the equation (20)
can be more conveniently expressed as

C(t) = U(t)agcos?(y)sin(y)|U2, |+ (21)
+ cos(wet)[Co — ag cos(7) sin(y)|UZ,| 1.



Conditions for the Existence of Displaced Orbits

The solution can be made to contain only the periodic oscillatory
modes at an out-of-plane distance

Go = ag cos”(7) sin(y)[UZ,| .

(22)



Conditions for the Existence of Displaced Orbits

The solution can be made to contain only the periodic oscillatory
modes at an out-of-plane distance

Go = apcos®(y) sin()|UZ.| ™. (22)

Furthermore, the out-of-plane distance can be by an
optimal choice of the sail pitch angle determined by

9 o?()sinty)| = o,
d’y =A%

v = 35.264°. (23)
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Objectives

To develop a feedback linearization scheme, the motion of the hybrid
solar sail moving in the CRTBP is separated into linear and nonlinear
components, such that

g — fjg\fon—Linear + flgfinear + CL&' + ’LL&, (24)
7.7. — f]?ZTon—Linea,r + fzinear + a77 + u777 (25)
— f]ifon—Linear + fIC/inear + aC + uC’ (26)

where the f functions are defined as the linear and the nonlinear terms



FXon—Lincar
T incar
f;zfon—Linear
FLincar
f]CVOn—Linear

¢
sz'neaT

with

Objectives

1 2

V{@e + 9+ 2+ +¢2

\/((xLi+f)_1+,LL)2—|—n2-|—C2_




Objectives

We then select the SEP control w(t) such that

Ug
u(t) = | uy = U(t) + ul(t), (27)
| U¢ ]
where
i (wry+&)+ (xp,+&)—1+ o ¢ |

(ajL2 + 5) o (1 o ,LL) L2Tfi3 o X = 7“% o Ua:azg

| 1=p N __J7Jo
U(t) =— ( e T 7123)77 Uyyn
o <173'LL + :é) C o UzOzC

1 2

(

is the cancelling term and u(t) the stabilizing term.



Objectives

The motion of the hybrid solar sail in the CRTBP is then described by
the equations

21) + US,€ + ag cos(wyt) cos®(7y) + e, (29)
o= —26+ U,,n — aosin(wit) cos® () + iy, (30)
= UZC + apcos?(y) sin(7) + i 31)

7aa%
|
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Stabilization

Let us consider nonlinear system described by
= f(x,&) +u, (32)
where x € R? is the position. Let e(t) = x(t) — . ¢(t) denote the

position error relative to some reference solution, where the reference
trajectory

T

wref(t) — [ gref Nref Cref } (33)

IS given by the analytical solution

Eo cos(wixt),

Eref(t)
Mref(t) = nosin(wit),
Cref (t) CO-

~~



Stabilization

We then differentiate e(¢) until the control appears so that

e(t) = alt) - wes(t),
&(t) = (1) — dres(t),
8(t) = (1)~ Bres(t),

w
N

w
Ol

W
9))



Stabilization

We then differentiate e(¢) until the control appears so that

e(t) = a(t)— Tpes(t),

) = @lt) = e (0)

E1) = (1) — dpes(t),
= f(z, @) +u — ZLrer(),
— _)\é— e

and so, we have

’U,(t) = —f(CB, CI.J) + iref(t) — )\16.3 — )\26.

‘©w
9

(37)



Trajectory Tracking

e Consider the system given by Eq. (32), where our objective is to
make the output = € R? track a desired trajectory given by the
reference trajectory x,..; € R® while keeping the whole position
bounded.

e Therefore, we want to find a control law for the input @ € R? such
that, starting from any initial position in a domain D C R?, the
tracking error e(t) = x(t) — =, f(t) goes to zero, while the whole
position € R3 remains bounded.
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Trajectory Tracking

e Consider the system given by Eq. (32), where our objective is to
make the output = € R? track a desired trajectory given by the
reference trajectory x,..; € R® while keeping the whole position
bounded.

e Therefore, we want to find a control law for the input @ € R? such
that, starting from any initial position in a domain D C R?, the
tracking error e(t) = x(t) — =, f(t) goes to zero, while the whole
position € R3 remains bounded.

e Hence, asymtotic tracking will be achieved if we design a state
feedback control law to ensure that e(¢) is bounded and converges
to zero as t tends to infinity.

Thus, the control law
u = —>\1é — )\26 (38)

yields the tracking error equation
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Evaluation of Hybrid Sail Performance

e The appears in Figure 2. Thus,
the control acceleration effort U required to track the reference orbit
while rejecting the nonlinearities varies up to 0.004 (0.012 mm/s?) for
the orbit about L; and 0.005 (0.014 mm/s?) for the orbit about the L,
point.

e The control accelerations are continous smooth signals.

0.0040 | 0.005¢

0.0035 | 0.004 |

0.0030 - [
: 0.003
0.0025 [ i
b 0.002 [
0.0020 .

0.0015 | 0.001 :,

(a) (b)

Figure 2: (a) Magnitude of the total control effort about the L, point; (b)
Magnitude of the total control effort about the L, point.



Evaluation of Hybrid Sail Performance

e The acceleration derived from the solar sail (denoted by a¢, a,, a¢) is
plotted in terms of components for one-month orbits in Figure 3 (a)
about L+, Figure 4 (a) about L,, and the SEP acceleration
components appears in Figure 3 (b) about Lq, Figure 4 (b) about L,

e The control acceleration effort derived from the thruster (denoted by
Ue, Uy, U¢) is order of 1072 - 10~%, while the acceleration derived
from the solar sail is over approximately 1072.

&
003 0.004
0.02f i

i 0.003|-
0.01F I
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Evaluation of Hybrid Sail Performance
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Figure 3: (a) Acceleration derived from the solar sail about the L, point;
(b) Acceleration derived from the thruster about the L, point.



Evaluation of Hybrid Sail Performance

e The small control acceleration from the SEP thruster is then applied
to ensure that the displacement of the periodic orbit is constant. The
solar sail provides a constant out-of-plane force.
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Evaluation of Hybrid Sail Performance
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Figure 4: (a) Acceleration derived from the solar sail about the L, point;
(b) Acceleration derived from the thruster about the L, point.



Evaluation of Hybrid Sail Performance

e Figure 5 (a) (resp. Figure 5 (b)) illustrates the position error
components, denoted by e¢, e,,, e under the nonlinear control and
the SEP thruster around L (resp. L-).

e These Figures show that the motion is bounded and periodic. This
observation implies that the augmented thrust acceleration ensures
a constant displacement orbit.
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Evaluation of Hybrid Sail Performance
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Figure 5: (a) Position error components about the L; point
with e(0) = (—0.00011,—0.0010,0.00045)T (critically damped

motion); (b) Position errors components about the L, point with
e(0) = (0.000073, —0.0014, 0.00045)*" (critically damped motion).



Evaluation of Hybrid Sail Performance

Figure 6: Orbit resulting from tracking the reference orbit using the
nonlinear control and SEP thruster: (a) Above Lq; (b) Above L.



Propellant Usage

e Assume a specific impulse of I, = 3000 sec and an initial mass of
m; = 500 kg, we have the average AV per orbit of approximately 23
m/s.

e Then, the total AV per orbit over 5 years is 1536 m/s. The
IS then m,,,.,, = 25 kg.



Applications

e A hybrid concept for displaced periodic orbits in the Earth-Moon
system has been developed.

o A feedback linearization was used to perform stabilization and
trajectory tracking for nonlinear systems.

e The augmented thrust acceleration is than applied to ensure a
, Which provides key
advantages for lunar polar telecommunications.
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This have the property of ensuring of
both the lunar far-side and the equatorial regions of the Earth, and
can enable new ways of performing lunar telecommunications.
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