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A novel high order compact scheme for solving the compressible Navier-Stokes equations

has been developed. The scheme is an extension of a method originally proposed for solving

the Euler equations, and combines several techniques for the solution of compressible flow

fields, such as upwinding, limiting and flux vector splitting, with the excellent properties

of high order compact schemes. Extending the method to the Navier-Stokes equations

is achieved via a Kinetic Flux Vector Splitting technique, which represents an unusual

and attractive way to include viscous effects. This approach offers a more accurate and

less computationally expensive technique than discretizations based on more conventional

operator splitting. The Euler solver has been validated against several inviscid test cases,

and results for several viscous test cases are also presented. The results confirm that the

method is stable, accurate and has excellent shock-capturing capabilities for both viscous

and inviscid flows.

I. Introduction

Access to Earth or planetary orbits, and entry into the Earth’s atmosphere, require flight through the hy-
personic regime. This flight regime often proves to be the design driver for most of the vehicle’s systems and
components. Today, the state-of-the art for hypersonic flow simulations consists of a second order discretiza-
tion, shock-capturing schemes on structured grids with some limited capabilities on unstructured grids. Two
common problems of codes employing these kind of methods are: 1) high levels of dissipation making them
poor candidates for Large Eddy Simulation (LES); and 2) inadequate grid convergence properties. Without
doubt, there is great interest in designing robust and reliable high order and high resolution methods suitable
for hypersonic flow simulation. Compact algorithms make it possible to devise, on a given stencil, difference
schemes that have much better spatial resolution properties than conventional explicit difference schemes of
comparable order of accuracy, and more compact stencils.

When a wide range of spatial scales and structures has to be computed, spectral and pseudo-spectral
schemes are commonly used. Compact schemes with spectral-like resolution properties are more convenient to
use than spectral and pseudo-spectral schemes, and are easier to handle, especially when complex geometries
are involved. The price paid is that one is required in general to invert a block tridiagonal system of linear
equations to obtain derivatives.

The interest in compact schemes started with the pioneering work by Lele,1 even though compact ap-
proximations had been used previously by other authors. The first compact schemes developed were central
schemes. However, centered algorithms are intrinsically non-dissipative and cannot prevent odd-even de-
coupling, which gives rise to high frequency oscillations even in smooth regions. Asymmetric schemes, with
their dissipative properties, are more stable. However even asymmetric compact schemes cause non-physical
oscillations when applied directly to flows with discontinuities. These non-physical oscillations (Gibbs phe-
nomena) do not decay in magnitude even if the grid is refined. Several methods have been proposed to
stabilize compact schemes when resolving flows with discontinuities. These methods belong to one of the
following three categories.
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The first class are those proposed by Cook and Cabot,2, 3 Fiorina and Lele4 and Cook.5 Very high order
background dissipation terms are added to a central scheme. These artificial dissipation terms are related to
very high order derivatives so that the error introduced is smaller than the truncation error of the scheme.
This strategy is by far the most accurate, as one has full control of the amount of dissipation introduced,
just sufficient to capture discontinuities and damp unphysical oscillations. Drawbacks of this strategy are:
(i) the fine tuning required for the artificial diffusivity coefficients; (ii) its complexity; (iii) the loss of the
compactness of the stencil, because of the very high order derivatives in the artificial dissipation terms.

In the second class are methods which blend the compact scheme with an essentially non-oscillatory
scheme, such as ENO/WENO6–8 schemes. Compact and ENO/WENO schemes have complementary prop-
erties: compact schemes have excellent resolution properties but oscillatory behavior near discontinuities;
ENO/WENO schemes are non-oscillatory but dissipative even for intermediate wavenumbers, and are un-
satisfactory in smooth regions with moderately high field gradients. By switching from a compact to a
ENO/WENO scheme near discontinuities one can achieve uniformly high accurate solutions with high res-
olution in smooth regions and non-oscillatory behavior in regions with steep gradients. However, a free
threshold parameter, which controls the switch between the compact and the ENO/WENO scheme, needs to
be tuned, and some of these hybrid schemes9, 10 experience non-smooth transition near the interface where
the scheme switches types. Spurious waves will eventually propagate into the smooth regions, as reported
by Adams and Shariff.10 Ren et al.

11 have developed a characteristic-wise hybrid scheme, which can be
regarded as an improvement of the method proposed by Pirozzoli.9

Methods belonging to the third category rely on a classical limiting strategy. Cockburn and Shu12 have
developed a non-linear limiter to avoid spurious oscillations while maintaining the formal accuracy of the
scheme. However, in their numerical tests, spurious oscillations were still evident. Yee13 extended and
improved the latter scheme, but no numerical tests were given. Ravichandran14 employed a TVD limiter
combined with a kinetic flux vector splitting (KFVS) method to improve stability of compact upwind schemes,
proposing a third order scheme supposed to degenerate to first order accuracy at the extrema. Recently Tu
and Yuan15 proposed a method where a compact upwind scheme is limited through a characteristic-based
approach. The limiting approach is not as common as the hybridizing approach, as degeneration of accuracy
near extrema is an undesirable feature when solving, for example, shock-turbulence interaction problems.
Furthermore, Cockburn and Shu12 found that the introduction of minmod limiters in centered schemes
affects the accuracy of the solution, even in smooth regions, if there are spurious oscillations to suppress. On
the other hand, Ravichandran14 showed that upwinding the compact scheme and employing kinetic splitting
provide effective damping of spurious oscillations in smooth regions, and thus the accuracy degenerates
only across discontinuities. This approach is attractive also for its relative simplicity, robustness, and lower
computational cost.

We have selected the scheme proposed by Tu and Yuan15 as a solution method to extend and improve.
The compact scheme employed has been proposed by Pirozzoli9 and has some very interesting features.
First, it is upwind and is derived with a conservative approach, so it is suitable for problems involving
discontinuities. Moreover, only the inversion of a tridiagonal system of equations is required, hence it is not
as computationally demanding as other compact schemes. Finally, an extensive analysis of the scheme has
been conducted,9 showing its excellent resolution and spectral properties. Tu et al.

16 proposed a TVD limiter
and have applied it to the compact scheme developed by Pirozzoli. Tu and Yuan15 have also proposed a
characteristic-based treatment for the resulting compact TVD scheme: applying the limiting function to the
characteristic variables allows tighter control of the spurious oscillations near discontinuities. The algorithm
proposed by Tu and Yuan15 is very promising for compressible fluid dynamics, in particular for hypersonic
problems: it has excellent shock-capturing properties because of the conservative approach in deriving the
compact scheme; it is stable for problems involving strong discontinuities, such as hypersonic flow fields,
because of the upwinding and the limiter function; it is highly accurate in a narrow stencil because of the
compact algorithm, but it is not computationally demanding because only a tridiagonal system of linear
algebraic equations has to be inverted.

This paper is structured as follows. In Section II we present the governing equations. In Section III we
outline the numerical method. In Section IV several test cases are presented and discussed for both viscous
and inviscid flows. The report ends with some concluding remarks.
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II. Governing Equations

The governing equations are the Navier-Stokes equations, whose conservative vector form is:

∂Q

∂t
+

∂(E + Ev)

∂x
+

∂(F + Fv)

∂y
+

∂(G + Gv)

∂z
= 0, (1)
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The stress tensor τ and the heat flux vector q are:

τ =







τx,x τx,y τx,z

τy,x τy,y τy,z

τz,x τx,y τz,z






= µ(∇V + ∇V T ) −

2

3
µ(∇ · V )I, q =











qx

qy

qz











= −
cpµ

Pr
∇T.

In the above equations, ρ is the mass density, V the velocity vector, u, v and w its components along x,
y and z directions, respectively, p the pressure, T the temperature, H the total enthalpy, µ the viscosity,
Pr the Prandtl number, cp the constant pressure specific heat, I the identity tensor and the superscript T
denotes tensor transposition.

III. Numerical Method

In this section we first describe the inviscid solver we use as a building block for our viscous solver. We
consider different versions of the method and then discuss its extension to viscous flows.

A. The solution method for the Euler equations

In this section we outline the scheme proposed by Tu and Yuan15 to solve the Euler equations. Consider a
hyperbolic system of one-dimensional conservation laws:

∂Q

∂t
+

∂E(Q)

∂x
= 0, (2)

whose non-conservative form is:
∂Q

∂t
+ A

∂Q

∂x
= 0,

where A = dE/dQ is the flux Jacobian matrix, which, as the system is hyperbolic, has real eigenvalues and
a full set of linearly independent eigenvectors. It can be decomposed as follows:

A = RΛL,

where Λ is a diagonal matrix with the eigenvalues of A on the diagonal, R and L are, respectively, the right
and left eigenvector matrices.
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The semi-discrete form of Eq. (2) is:

∂Qi

∂t
+

Hi+1/2 − Hi−1/2

∆x
= 0, i = 1, 2, . . . , N,

where Hi+1/2 is the numerical flux function which is split into its positive and negative parts Hi+1/2 =

H+
i+1/2

+ H−
i+1/2

, and calculated as the sum of a first order term and a high order correction:

H+
i+1/2

= E+
i + φ+

i+1/2
, H−

i+1/2
= E−

i+1 − φ−
i+1/2

.

In the above relations E± can be any splitting of the flux vector E. The classical Steger-Warming flux
vector splitting was employed by Tu and Yuan.15 The high order correction φ± is calculated as follows. The
positive part of the high order numerical flux function Ê+

i+1/2
is calculated solving the following tridiagonal

system of linear algebraic equations:
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Ê+
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The scheme to compute the negative part of the high order numerical flux function Ê−
i+1/2

can be obtained

from the scheme above by symmetry considerations, and reads:
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Following the component-wise reconstruction of the positive and negative high order numerical flux function
Ê±

i+1/2
, the flux increments are computed and projected along characteristic directions:

∆Ŵ+
i+1/2

= Ll(Ê+
i+1/2

− E+
i ), ∆W+

i+1/2
= Ll(E+

i+1 − E+
i ),

∆Ŵ−
i+1/2

= Lr(E−
i+1 − Ê−

i+1/2
), ∆W−

i+1/2
= Lr(E−

i+1 − E−
i ).

The left eigenvector matrices Ll and Lr can be evaluated in either of the following ways:

1. Upwind evaluation, i.e., Ll = L(Qi) and Lr = L(Qi+1).

2. Evaluation at the Roe average state QRoe
i+1/2

between Qi and Qi+1, i.e., Ll = Lr = L(QRoe
i+1/2

).

The upwind evaluation was preferred by Tu and Yuan,15 as it was expected to be more dissipative and thus
more stable. We have considered both evaluations; a comparison will be shown in Section IV. We note that
∆Ŵ±

i+1/2
and ∆W±

i+1/2
are, respectively, high and low order upwind evaluations of the spatial increment of

fluxes of the characteristic variables. They are limited according to:

δW+
i+1/2

= φ(∆Ŵ+
i+1/2

, ∆W+
i+1/2

, ∆W+
i−1/2

),

δW−
i+1/2

= φ(∆Ŵ−
i+1/2

, ∆W−
i+1/2

, ∆W−
i+3/2

).

The limiter φ can be either of the following functions:16

φA(a, b, c) =

{

sgn(a)min(|a|, |b|), if a, b, c have the same sign,

0, otherwise.

φB(a, b, c) =

{

sgn(a)min
(

|a|, |b|, 2bc
|a|+|c|+ǫ

)

, if a, b, c have the same sign,

0, otherwise,
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where ǫ is an arbitrary small constant to avoid division by zero. Note that the type A limiter is a version of
the well known minmod limiter, whilst type B is a combination of the latter limiter and a version of the van
Leer limiter. Finally, the correction φ±

i+1/2
is calculated by projecting the limited increment of characteristic

fluxes back into conserved variable space:

φ+
i+1/2

= RlδW+
i+1/2

, φ−
i+1/2

= RrδW−
i+1/2

,

where Rl and Rr are right eigenvector matrices, whose evaluation is such that they are consistent with the
left eigenvector matrices Ll and Lr, respectively. The time derivative in Eq. (2) is discretized via a third
order Runge-Kutta scheme.7

The Euler equations in three-dimensional general coordinates may be written as:

∂Q̃

∂t
+

∂Ẽ

∂ξ
+

∂F̃

∂η
+

∂G̃

∂ζ
= 0, (3)

where

Q̃ =
Q

J
, Ẽ =

ξxE + ξyF + ξzG

J
, F̃ =

ηxE + ηyF + ηzG

J
, G̃ =

ζxE + ζyF + ζzG

J
,

and ξx, ξy, ξz, ηx, ηy, ηz, ζx, ζy, ζz are the metrics and J is the Jacobian. Eq. (3) is solved by applying the
one-dimensional scheme separately along ξ, η and ζ directions (dimensional splitting).

B. Solution method for the Navier-Stokes equations

When solving the Navier-Stokes equations for compressible flows, a shock-capturing scheme can be used to
discretize the inviscid flux, i.e.the Euler flux, whilst viscous fluxes can be discretized separately by means of
a central difference operator. Consider the following one-dimensional scalar conservation law as a model for
the Navier-Stokes equations:

∂u

∂t
+

∂

∂x

(

f(u) − k(u)
∂u

∂x

)

= 0, (4)

where u is a scalar quantity, f its inviscid flux and k its diffusivity. A stable semi-discretization of Eq. (4)
is:

∂u

∂t
+ DTVD

up f − DkDu − kD2u = 0, (5)

where DTVD
up is the operator representing the compact upwind TVD scheme described in Sec. A, D and D2

are compact central operators for the first and second derivatives, respectively. In Eq. (5) the derivative of
the viscous flux has been expanded via the chain rule, as suggested by Lele,1 to improve stability.

Zhong17 discretized the viscous flux by applying twice a central operator for the first derivative, along
with an upwind operator for the inviscid flux, and the resulting scheme for the Navier-Stokes equations has
been shown to be stable. Another stable semi-discrete form of Eq. (4) is therefore:

∂u

∂t
+ DTVD

up f − D(kDu) = 0. (6)

A third option for discretizing Eq. (4) is:

∂u

∂t
+ DTVD

up (f − kDu) = 0. (7)

Such a discretization is possible as long as a splitting technique for the total flux ftot = f − kux is available,
and, to the best of our knowledge, this has never been investigated. The advantages of the latter discretization
over the conventional ones are:

• it is computationally less expensive, since three linear systems are solved to compute derivatives,
whilst five and four linear systems are to be inverted for discretizations (5) and (6), respectively. This
computational advantage is even more remarkable when multi-dimensional problems and Navier-Stokes
equations are considered.
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• It is fully conservative, and thus aims to achieve the robustness of finite volume methods along with
the accuracy of finite difference methods.

• The high order compact reconstruction is applied to the total flux, which is supposed to be smoother
than the inviscid flux, and thus less spurious oscillations are expected.

• Since the total flux incorporates the physical viscosity and is better reconstructed, limiting such a flux
is a practice less prone to over-damping.

The major drawback of discretization (7) stems from the upwinding of the viscous flux, which does not
mimic the physical non-directional nature of this flux. This may eventually lead to instability for some
diffusion-dominated flows and thus requires wide testing. In the following we will refer to discretizations (6),
(5) and (7) as CU5-CC6, CU5-CC6-NC and CU5-CC6-K, respectively.

As stated, discretization (7) relies on the availability of a splitting technique for the total flux. The
Kinetic Flux Vector Splitting (KFVS) proposed by Chou and Baganoff18 is suitable for flux splitting the
Navier-Stokes equations. Chou and Baganoff18 employed the splitting in the framework of a finite volume
approach and made it second order via the Monotone Upstream-centered Schemes for Conservation Laws

(MUSCL) approximation.
An attempt to combine the robustness and physical accuracy of the kinetic splitting with the high formal

accuracy and resolution properties of compact schemes can be found in the work by Ravichandran.14 He
employed a kinetic splitting for the Euler equations along with a compact upwind TVD scheme to solve the
Euler equations, and the test cases clearly show the higher accuracy and better resolution properties with
respect to the second order MUSCL scheme employing the same splitting.

From another point of view, combining kinetic splitting for the Navier-Stokes equations18 with a compact
upwind TVD scheme15 can be seen as an attempt to generate a high order KFVS method on structured
meshes.

IV. Numerical Tests

The scheme described in Sec. III has been validated against a range of test cases. Results are shown in
this section; the first two are inviscid cases whilst the last three are viscous problems.

A. Lax Shock Tube
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(a) Upwind Eigenvector Matrix.
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(b) Roe Eigenvector Matrix.

Figure 1. Density at time t = 0.8 for the Lax problem, – : analytical solution; ◦ : numerical solution.

The first test case is the one-dimensional Riemann problem proposed by Lax. A diaphragm placed at
x = 0 separates two regions where a gas is at different states. The left state is ρ = 0.445, u = 0.698,
p = 3.528, and the right state is ρ = 0.5, u = 0, p = 0.571. At time t = 0 the diaphragm is removed and the
two states are free to interact. This test case is a good benchmark for shock capturing schemes because a
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strong contact discontinuity develops which is usually smeared over several cells. The state of the system at
t = 0.8 has been computed using 100 cells equally spaced over the domain x ∈ [−3, 3]. The adiabatic index
was set to γ = 7/5. Results are shown in Fig. 1.

The method is shown to be very accurate with good shock-capturing properties, capturing the shock wave
in two points and the contact discontinuity in three points. Modifications of the original method proposed by
Tu and Yuan15 may be considered, changing the flux splitting technique, the limiter and the characteristic
treatment. We have investigated the effect of such parameters.

The characteristic treatment is the key feature of the method. If the flux is limited component-wise, i.e.,
no projection into characteristic space is performed, spurious low amplitude oscillations appear in velocity
and pressure, and a strong overshoot in the density profile appears between the shock and the contact surface.
If the characteristic processing is performed, the upwind evaluation of the eigenvector matrices provides a
more diffusive scheme, giving a poorer resolution of the contact discontinuity, as is shown in Figure 1

The effect of the flux vector splitting technique is not as remarkable. Changing the limiter also has no
effect for this test case. In the simulations presented in the rest of the paper, kinetic splitting, Roe average
state for the eigenvector matrices and type B limiter were used.

B. Mach 4 Flow past a Cylinder

The supersonic inviscid flow past a cylinder has been simulated. The grid comprises 60 × 120 cells equally
spaced over the domain (r, θ) ∈ [1, 4] × [0, 2π]. At the far field, non-reflective boundary conditions are
enforced, and the free stream primitive variables are:

ρ∞ = 7/5, u∞ = 4, v∞ = 0, p∞ = 1,

so that, with γ = 7/5, the free stream speed of sound is a∞ = 1, is solved. Reflective wall boundary
conditions are enforced at the surface of the cylinder.

In an inviscid flow the only source of entropy production is the shock wave; as the production of entropy
across an oblique shock is a function of the angle between the flow velocity and the shock, it follows that
downstream of a bow shock stream lines are entropy isolines. By examining Fig. 2(b), we see that this
feature of the ideal solution is predicted.

As the bow shock is adiabatic, the total enthalpy is expected to be constant in the flow field away from
the wake. Such a feature is predicted as well, as shown in Figure 2(c).

(a) Pressure (b) Entropy (c) Total Enthalpy

Figure 2. Mach 4 flow past a cylinder: contours of steady state solution
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C. The Shock Layer

An analytical solution to the Navier-Stokes equations is available for the one-dimensional shock layer prob-
lem,19 and can be employed as a benchmark for numerical methods. Let subscripts 1 and 2 denote states
upstream and downstream of the shock wave, respectively. As a test case we simulated a steady shock wave,
with shock Mach number Ms = 1.5. The upstream conditions are:

ρ1 = 7/5, u1 = 1.5, p1 = 1.

The Prandtl number was set to Pr = 3/4 and the isentropic index γ = 7/5. The gas constant was set to
R = 5/7, so that T1 = 1, and the downstream conditions are given by the Rankine-Hugoniot relations. A
simple linear viscosity law µ = T was assumed. In Fig. 3 the results obtained on 300 linearly spaced cells
over the domain x ∈ [−45, 48] are compared to the analytical solution. The challenge for this test case is the
correct prediction of dilatation, ∂xu, entropy and stagnation pressure. These quantities experience a peak
within the shock thickness, which can only be captured if small length scales are well-resolved. As we see
from Fig. 3 there is excellent agreement between the numerical and analytical solutions.

This problem has been simulated using different discretizations, namely CU5-CC6, CU5-CC6-NC and
CC5-CC6-K described in Section B. Scheme CU5-CC6-K employs the kinetic splitting for the total flux;
for the other two schemes the kinetic splitting for the inviscid flux was employed, so that differences may
not be attributed to the splitting techniques. As the results coincide, they are not shown. Hence, we can
conclude that, at least for this test case, CU5-CC6-K discretization has proved to be as accurate as the more
conventional ones, though less computationally expensive.
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Figure 3. Solutions to the shock layer problem, – : analytical solution; ◦ : numerical solution.

D. Self-similar Boundary Layer

A laminar boundary layer over a flat plate has also been simulated. The computational domain is (x, y) ∈
[−0.1, 1.7] × [0, 1.2]m2. The free stream Mach number, Reynolds number per meter and temperature are
M∞ = 2, Re∞,1 = 2.96 × 105m−1 and T∞ = 117K, respectively. The boundary conditions are inflow at
the left and top boundary, outflow at the right boundary. The bottom boundary is an inflow boundary up
to x = 0, and then a no-slip insulated wall. The fluid is air, with isentropic index γ = 7/5, gas constant
Rair = 287.06m2/s2K and Prandtl number Pr = 0.725. A grid convergence analysis has been done. The
coarser grid is made of 54 × 135 cells; the grid is equally spaced in the x direction and refined near the wall
in the y direction, with minimum cell size ∆ymin = 5×10−4m. In the finer grid the number of cells is double
in both directions. The boundary layer profiles at station x = 1.4m are compared to the self-similar profiles
obtained by the Crocco method20 in Fig. 4. The nondimensional velocity, temperature and shear stress are
plotted:

u∗ = u/u∞, T ∗ = T/T∞, τ∗ =
τx,y

√

Re∞,x

1/2ρ∞u2
∞

,

where Re∞,x is the free stream Reynolds number based on the distance from leading edge. The agreement
is excellent even for the coarser grid, although the fine grid definitely improves the temperature profile.
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Figure 4. Boundary layer profiles, – : analytical solution; � : numerical solution 54 × 135 cells; ◦ : numerical

solution 108 × 270 cells.

E. Blunted Cone

The final test case is hypersonic flow past a blunted cone. The geometry and the conditions are those in the
experiment carried out by Cleary et al.

21 The cone has a 15◦ half-angle, a nose curvature radius R = 1in
and a base diameter db = 12in. The free stream Mach number, Reynolds number per foot and stagnation
temperature are:

M∞ = 10.6, Re∞,1 = 106ft−1, T0 = 2000◦R.

The far field boundary is a parabola, with minimum and maximum distance from the body surface ηmin =
0.18in and ηmax = 3.5in, respectively. The grid is made of 158×78 cells, refined near the wall with minimum
cell thickness ∆ηmin = 4 × 10−4in. The cone has no angle of attack, so the axisymmetric formulation has
been used. The boundary conditions are: reflecting wall on the axis, inflow at the far field, outflow at the
outlet, no-slip insulated wall at the body surface. The fluid is air, with isentropic index γ = 7/5, gas constant
Rair = 287.06m2/s2K and Prandtl number Pr = 0.725. Results are shown in Fig. 5 and compared to the
experiment and the analytical inviscid solution obtained via the method of characteristics. The pressure
coefficient

Cp =
p − p∞
1/2ρu2

∞

,

is plotted, with p being the wall pressure in Fig. 5(a), and the Pitot pressure in Fig. 5(b). The numerical
results have excellent agreement with both the experiment and the analytical solution.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  2  4  6  8  10  12  14  16  18

W
al

l p
re

ss
ur

e 
co

ef
fic

ie
nt

 C
p w

Axial distance, x/R

(a) Surface pressure coefficient

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  1  2  3  4  5  6  7

W
al

l d
is

ta
nc

e,
 η

/R

Pitot pressure coefficient, Cppitot

(b) Pitot pressure coefficient at x/R = 3.59

Figure 5. Blunted cone results, ◦ : numerical solution; � : experiment; – : analytical solution
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V. Conclusion

A novel scheme for solving the Navier-Stokes equations has been proposed, which is suitable for the
simulation of hypersonic flows. The scheme has very high formal accuracy, high resolution properties and
is not as computationally demanding as other methods with comparable accuracy. It has been validated
against analytical solutions and experimental data and has been shown to be accurate and stable. Future
development will involve further validation of the scheme and inclusion of rarefaction effects into the physical
model.
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