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We consider displaced periodic orbits at linear order in the circular restricted Earth-

Moon system, where the third massless body is a solar sail. These highly non-Keplerian

orbits are achieved using an extremely small sail acceleration. Prior results have been de-

veloped by using an optimal choice of the sail pitch angle, which maximizes the out-of-plane

displacement. In this paper we will use solar sail propulsion to provide station-keeping at

periodic orbits around the libration points using small variations in the sail’s orientation.

By introducing a first-order approximation, periodic orbits are derived analytically at linear

order. These approximate analytical solutions are utilized in a numerical search to deter-

mine displaced periodic orbits in the full nonlinear model. Applications include continuous

line-of-sight communications with the lunar poles.

I. Introduction

O
ver several years, solar sailing has been studied as a novel propulsion system for space missions. Solar
sail technology appears as a promising form of advanced spacecraft propulsion which can enable exciting

new space-science mission concepts such as solar system exploration and deep space observation. Although
solar sailing has been considered as a practical means of spacecraft propulsion only relatively recently, the
fundamental ideas are by no means new (see McInnes1 for a detailed description). A solar sail is propelled
by reflecting solar photons and therefore can transform the momentum of the photons into a propulsive
force. Solar sails can also be utilised for highly non-Keplerian orbits, such as orbits displaced high above the
ecliptic plane (see Waters and McInnes2). Solar sails are especially suited for such non-Keplerian orbits, since
they can apply a propulsive force continuously. In such trajectories, a sail can be used as a communication
satellite for high latitudes. For example, the orbital plane of the sail can be displaced above the orbital
plane of the Earth, so that the sail can stay fixed above the Earth at some distance, if the orbital periods
are equal (see Forward3). Orbits around the collinear points of the Earth-Moon system are also of great
interest because their unique positions are advantageous for several important applications in space mission
design (see e.g. Szebehely4, Roy,5 Vonbun,6 Gómez et al.7,8). In recent years several authors have tried
to determine more accurate approximations (quasi-Halo orbits) of such equilibrium orbits9. These orbits
were first studied by Farquhar10, Farquhar and Kamel9, Breakwell and Brown11, Richardson12, Howell13,14.
If an orbit maintains visibility from Earth, a spacecraft on it (near the L2 point) can be used to provide
communications between the equatorial regions of the Earth and the lunar poles. The establishment of a
bridge for radio communications is crucial for forthcoming space missions, which plan to use the lunar poles.
McInnes15 investigated a new family of displaced solar sail orbits near the Earth-Moon libration points.
Displaced orbits have more recently been developed by Ozimek et al.16 using collocation methods. In Baoyin
and McInnes17,18,19 and McInnes15,20, the authors describe new orbits which are associated with artificial
Lagrange points in the Earth-Sun system. These artificial equilibria have potential applications for future
space physics and Earth observation missions. In McInnes and Simmons21, the authors investigate large new
families of solar sail orbits, such as Sun-centered halo-type trajectories, with the sail executing a circular
orbit of a chosen period above the ecliptic plane. The solar sail Earth-Moon problem differs greatly from
the Earth-Sun system as the Sun-line direction varies continuously in the rotating frame and the equations
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of motion of the sail are given by a set of nonlinear, non-autonomous ordinary differential equations. We
have recently investigated displaced periodic orbits at linear order in the Earth-Moon restricted three-body
system, where the third massless body is a solar sail (see Simo and McInnes22). These highly non-Keplerian
orbits are achieved using an extremely small sail acceleration. It was found that for a given displacement
distance above/below the Earth-Moon plane it is easier by a factor of order 3.19 to do so at L4/L5 compared
to L1/L2 - ie. for a fixed sail acceleration the displacement distance at L4/L5 is greater than that at
L1/L2. In addition, displaced L4/L5 orbits are passively stable, making them more forgiving to sail pointing
errors than highly unstable orbits at L1/L2. The drawback of the new family of orbits is the increased
telecommunications path-length, particularly the Moon-L4 distance compared to the Moon-L2 distance.

In this paper we will use solar sail propulsion to provide station-keeping at periodic orbits about the
triangular libration points using small variations in the sail’s orientation. We develop and implement a
control methodology for maintaining the sail in the z-direction. Thus, a linear feedback controller is proposed
by linearizing the z-dynamics about the triangular libration points. A simulation using this controller is then
performed using constant gains.

II. System Model

In this work m1 represents the larger primary (Earth), m2 the smaller primary (Moon) and we will be
concerned with the motion of a hybrid sail that has negligible mass. It is always assumed that the two more
massive bodies are moving in circular orbits with constant angular velocity ω about their common center of
mass, and the mass of the third body is too small to affect the motion of the two more massive bodies. The
unit mass is taken to be the total mass of the system (m1 + m2) and the unit of length is chosen to be the
constant separation R⋆ between m1 and m2. The time unit is defined such that m2 orbits around m1 in time
2π. Under these considerations the masses of the primaries in the normalized system of units are m1 = 1−µ
and m2 = µ, with µ = m2/(m1 + m2) (see Figure 1). Thus, in the Earth-Moon system, the nondimensional
unit acceleration is aref = ω2R⋆ = 2.7307 mm/s2 where the Earth-Moon distance R⋆ = 384400 km. The
dashed line in Figure 1) is a line parallel to the Sun-line direction S.
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Figure 1. Schematic geometry of the Earth-Moon restricted three-body problem.

II.A. Equations of motion in presence of a solar sail

The nondimensional equation of a motion of a solar sail in the rotating frame of reference is described by

d2
r

dt2
+ 2ω ×

dr

dt
+ ∇U(r) = aS , (1)

where ω = ωẑ (ẑ is a unit vector pointing in the direction z) is the angular velocity vector of the rotating
frame and r is the position vector of the sail relative to the center of mass of the two primaries. We will not
consider the small annual changes in the inclination of the Sun-line with respect to the plane of the system.
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The three-body gravitational potential U(r) and the solar radiation pressure acceleration aS are defined by

U(r) = −

[

1

2
|ω × r|2 +

1 − µ

r1
+

µ

r2

]

,

aS = a0(S · n)2n, (2)

where µ = 0.1215 is the mass ratio for the Earth-Moon system. The sail position vectors w.r.t. m1 and m2

respectively (see Figure 1) are r1 = [x + µ, y, z ]T and r2 = [x − (1 − µ), y, z]T , a0 is the magnitude of the
solar radition pressure acceleration exerted on the sail and the unit vector n denotes the thrust direction.
The sail is oriented such that it is always directed along the Sun-line S, pitched at an angle γ to provide a
constant out-of-plane force. The unit normal to the sail surface n and the Sun-line direction S are given by

n =
[

cos(γ) cos(ω⋆t) − cos(γ) sin(ω⋆t) sin(γ)
]T

, (3)

S =
[

cos(ω⋆t) − sin(ω⋆t) 0
]T

, (4)

where ω⋆ = 0.923 is the angular rate of the Sun-line in the corotating frame in a dimensionless synodic
coordinate system.

II.B. Linearized system

We now investigate the dynamics of the sail in the neighborhood of the libration points. We denote the
coordinates of the equilibrium point as rL = (xLi

, yLi
, zLi

) with i = 1, · · · , 5. Let a small displacement in
rL be δr such that r → rL + δr. The equation of motion for the solar sail in the neighborhood of rL are
therefore

d2δr

dt2
+ 2ω ×

dδr

dt
+ ∇U(rL + δr) = aS(rL + δr). (5)

Then, retaining only the first-order term in δr = [ξ, η, ζ]T in a Taylor-series expansion, where (ξ, η, ζ) are
attached to the L2 point as shown in Figure 1, the gradient of the potential and the acceleration can be
expressed as

∇U(rL + δr) = ∇U(rL) +
∂∇U(r)

∂r

∣

∣

∣

∣

r=rL

δr + O(δr2), (6)

aS(rL + δr) = aS(rL) +
∂aS(r)

∂r

∣

∣

∣

∣

r=rL

δr + O(δr2). (7)

It is assumed that ∇U(rL) = 0, and the sail acceleration is constant with respect to the small displacement
δr, so that

∂aS(r)

∂r

∣

∣

∣

∣

r=rL

= 0. (8)

The linear variational system associated with the libration points at rL can be determined by substituting
Eqs. (6) and (7) into (5)

d2δr

dt2
+ 2ω ×

dδr

dt
− Kδr = aS(rL), (9)

where the matrix K is defined as

K = −

[

∂∇U(r)

∂r

∣

∣

∣

∣

r=rL

]

. (10)

Using the matrix notation the linearized equation about the libration point (Equation (9)) can be represented
by the inhomogeneous linear system Ẋ = AX + b(t), where the state vector X = (δr, δṙ)T , and b(t) is a
6 × 1 vector, which represents the solar sail acceleration.

The Jacobian matrix A has the general form

A =

(

03 I3

K Ω

)

, (11)
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where I3 is a identity matrix, and

Ω =







0 2 0

−2 0 0

0 0 0






. (12)

For convenience the sail attitude is fixed such that the sail normal vector n, points always along the
direction of the Sun-line with the following constraint S ·n ≥ 0. Its direction is described by the pitch angle
γ relative to the Sun-line, which represents the sail attitude. The linearized nondimensional equations of
motion relative to a collinear libration point can then be written as

ξ̈ − 2η̇ = Uo
xxξ + aξ, (13)

η̈ + 2ξ̇ = Uo
yyη + aη, (14)

ζ̈ = Uo
zzζ + aζ , (15)

where Uo
xx, Uo

yy, and Uo
zz are the partial derivatives of the gravitational potential evaluated at the collinear

libration point, and the solar sail acceleration is defined in terms of three auxiliary variables aξ, aη, and aζ

aξ = a0 cos(ω⋆t) cos3(γ), (16)

aη = −a0 sin(ω⋆t) cos3(γ), (17)

aζ = a0 cos2(γ) sin(γ). (18)

In a similar fashion, recalling the linearized equations of motion obtained in the equation (9) describing
the behavior of the system in the vicinity of the Lagrange points, it can be easily shown that the the linear
variational equations of motion in component form at the triangular points then become

ξ̈ − 2η̇ = Uo
xxξ + Uo

xyη + aξ, (19)

η̈ + 2ξ̇ = Uo
xyξ + Uo

yyη + aη, (20)

ζ̈ = Uo
zzζ + aζ , (21)

We will continue with the solution to the linearized equations of motion in the Earth-Moon restricted
three-body problem in the next section.

III. Solution of the linearized equations of motion for the three-body model

In order to evaluate the three-body model, we will obtain a displaced periodic orbit from the linearized
dynamics defined earlier. Considering the dynamics of motion near the collinear libration points, we may
choose a particular periodic solution in the plane of the form (see Farquhar23)

ξ(t) = ξ0 cos(ω⋆t), (22)

η(t) = η0 sin(ω⋆t). (23)

By inserting equations (22) and (23) in the differential equations (13-15), we obtain the linear system in ξ0

and η0,







(

Uo
xx − ω2

⋆

)

ξ0 − 2ω⋆η0 = a0 cos3(γ),

−2ω⋆ξ0 +
(

Uo
yy − ω2

⋆

)

η0 = −a0 cos3(γ).
(24)

Then the amplitudes ξ0 and η0 are given by
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ξ0 = a0

(

Uo
yy − ω2

⋆ − 2ω⋆

)

cos3(γ)
(

Uo
xx − ω2

⋆

)(

Uo
yy − ω2

⋆

)

− 4ω2
⋆

, (25)

η0 = a0

(

− Uo
xx + ω2

⋆ + 2ω⋆

)

cos3(γ)
(

Uo
xx − ω2

⋆

)(

Uo
yy − ω2

⋆

)

− 4ω2
⋆

, (26)

and we have the equality
ξ0

η0
=

ω2
⋆ + 2ω⋆ − Uo

yy

−ω2
⋆ − 2ω⋆ + Uo

xx

. (27)

The trajectory will therefore be an ellipse centered on a collinear libration point. We can find the required
radiation pressure acceleration by solving equation (25)

a0 = cos−3(γ)

[

ω4
⋆ − ω2

⋆(Uo
xx + Uo

yy + 4) + Uo
xxUo

yy

Uo
yy − 2ω⋆ − ω2

⋆

]

ξ0.

By applying a Laplace transform, the uncoupled out-of-plane ζ-motion defined by the equation (15) can
be obtained as

ζ(t) = U(t)a0 cos2(γ) sin(γ)|Uo
zz|

−1 + ζ̇0|U
o
zz|

−1/2 sin(ωζt) + cos(ωζt)[ζ0 − a0 cos2(γ) sin(γ)|Uo
zz|

−1 (28)

where the nondimensional frequency ωζ is defined as

ωζ = |Uo
zz|

1/2

and U(t) is the unit step function.

A sufficient condition for displaced orbits based on the sail pitch angle γ and the magnitude of the solar
radiation pressure a0 for fixed initial out-of-plane distance ζ0 can be derived. Specifically for the choice of
the initial data ζ̇0 = 0, equation (28) can be more conveniently expressed as

ζ(t) = U(t)a0 cos2(γ) sin(γ)|Uo
zz|

−1 (29)

+ cos(ωζt)[ζ0 − a0 cos2(γ) sin(γ)|Uo
zz|

−1].

The solution can then be made to contain only a constant displacement at an out-of-plane distance

ζ0 = a0 cos2(γ) sin(γ)|Uo
zz|

−1. (30)

Furthermore, the out-of-plane distance can be maximized by an optimal choice of the sail pitch angle
determined by

d

dγ
cos2(γ) sin(γ)

∣

∣

∣

∣

γ=γ⋆

= 0,

γ⋆ = 35.264◦. (31)

We now have conditions for a small displaced periodic orbit centered on the collinear libration points.

Following the idea already presented for the collinear points, since the particular solution in the plane
(Eq. (22) and (23)) cannot satisfy the linear ODEs for the triangular points (Eq. (19)-(21)), the subsequent
discussion is to find solutions that satisfy these differential equations.

Assume that a solution to the linearized equations of motion (19-21) is periodic of the form
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ξ(t) = Aξ cos(ω⋆t) + Bξ sin(ω⋆t), (32)

η(t) = Aη cos(ω⋆t) + Bη sin(ω⋆t), (33)

where Aξ, Aη, Bξ and Bη are free parameters to be determined.
By substituting Equations (32) and (33) in the differential equations, we obtain the linear system in Aξ,

Aη, Bξ and Bη,



















−(ω2
⋆ + Uo

xx)Bξ + 2ω⋆Aη − Uo
xyBη = 0,

−Uo
xyAξ + 2ω⋆Bξ − (ω2

⋆ + Uo
xx)Aη = 0,

−(ω2
⋆ + Uo

xx)Aξ − Uo
xyAη − 2ω⋆Bη = a0 cos(γ)3,

−2ω⋆Aξ − Uo
xyBξ − (ω2

⋆ + Uo
yy)Bη = −a0 cos(γ)3.

(34)

Thus, the linear system may be solved to find the coefficient Aξ, Bξ, Aη and Bη, which will satisfy the
ODEs.

For convenience, define

x =
[

Aξ Bξ Aη Bη

]T

, A =

[

A1 B1

C1 D1

]

,

and

b =
[

0 0 a0 cos3(γ) −a0 cos3(γ)
]T

,

where the submatrices of A are given by

A1 =

[

0 −ω2
⋆ − Uo

xx

−Uo
xy 2ω⋆

]

, B1 =

[

2ω⋆ −Uo
xy

−ω2
⋆ − Uo

yy 0

]

,

C1 =

[

−ω2
⋆ − Uo

xx 0

−2ω⋆ −Uo
xy

]

, D1 =

[

−Uo
xy −2ω⋆

0 −ω2
⋆ − Uo

yy

]

.

We have in matrix form Ax = b, and the solution to the linear system is given by

x = A−1b,

where the coefficients Aξ, Aη, Bξ and Bη are amplitudes that characterize the orbit. The out-of-plane
dynamics (Eq. (21)) are again uncoupled and follow the same analysis as the collinear points.

This section is now concerned with the numerical computation of displaced periodic orbits around the
Lagrange points in the Earth-Moon system. As has been shown, there exist displaced orbits at all Lagrange
points. For example, the numerical nonlinear results for the Lagrange points L4 (Figure 2 (a)), and L5

(Figure 2 (b)) demonstrate, that displaced periodic orbits appear in their vicinity with a period of 28 days
(synodic lunar month).

Furthermore, the numerically integrated nonlinear (solid line) equations match the linear analytic solu-
tions (dashed line) for a small displaced orbit (Figure 3 (a), and 3 (b)).

In order to maintain the sail in the z-direction for a long period above the triangular libration points, a
simple linear feedback controller will be developed.
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Figure 2. (a) Periodic Orbits at linear order around L4; (b) Periodic Orbits at linear order around L5.
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Figure 3. (a) Comparison between the analytical (dashed line) and nonlinear (solid line) results (L4); (b) Comparison
between the analytical (dashed line) and nonlinear (solid line) results (L5).
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Figure 4. (a) Quasi-Periodic Orbits around L4; (b) Quasi-Periodic Orbits around L5.
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Figure 5. (a) Linear Feedback Control on Sail x, y, z-position (L4); (b) Linear Feedback Control on Sail x, y, z-position
(L5).
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Figure 6. (a) Control History for the L4 Quasi-Periodic Orbits; (b) Control History for the L5 Quasi-Periodic Orbits.

IV. Control of Sail z-Position

In this section we consider the problem of maintaining a sail at a triangular libration point. To accomplish
this task a simple control methodology is developed for stationing the solar sail. The control is achieved by
using small variations in the sail’s orientation.

Recall that the motion along the z-axis is independent of the motion in the xy-plane. Thus, a z-axis
control of the sail orbit is studied. The z-position is maintained at the triangular libration points by adjusting
the control angle γ in such a way that it will cancell disturbances that drive the sail away from those points.

The linear feedback controller is developed by linearizing the z-dynamics around the triangular libration
points and some sail attitude γ0.

From the equation (21), the linearization of the uncoupled motion about γ0 gives

ζ̈ =
∂2U

∂z2

∣

∣

∣

∣

o

ζ + a0 cos2(γ0) sin(γ0), (35)

where the subscript o refers to the triangular libration point. If ζ̈ = 0, the condition for out-of-plane
equilibrium is given by

a0 cos2(γ0) sin(γ0) = −
∂2U

∂z2

∣

∣

∣

∣

o

ζ0. (36)

Now let

ζ = ζ0 + δζ, (37)

γ = γ0 + δγ. (38)

By making use of Eqs. (37) and (38), the uncoupled motion (Eq. (21)) can be stated as

d2

dt2

(

ζ0 + δζ
)

=
∂2U

∂z2

∣

∣

∣

∣

o

(

ζ0 + δζ
)

+ a0 cos2(γ0) sin(γ0) + a0

(

cos3(γ0) − 2 cos(γ0) sin2(γ0)
)

δγ, (39)

Applying Eq. (36), then Eq. (39) can now be rewritten as

δζ̈ =
∂2U

∂z2

∣

∣

∣

∣

o

δζ + a0

(

cos3(γ0) − 2 cos(γ0) sin2(γ0)
)

δγ, (40)

where γ0 6= 35.264◦.
By setting

A =
∂2U

∂z2

∣

∣

∣

∣

o

, (41)

B = a0

(

cos2(γ0) − 2 cos(γ0) sin2(γ0)
)

δγ, (42)
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Eq. (40) can also be rearranged as
δζ̈ = A · δζ + B · δγ. (43)

Now it is possible to design the linear feedback controller of the form

δγ = C · δζ + D · δζ̇, (44)

where C and D are the PD-controller gains. Thus, the PD-controller will maintain the sail at a fixed
displacement above the triangular libration points.

Substituting Eq. (44) into Eq. (43), we obtain

δζ̈ = A · δζ + B(C · δζ + D · δζ̇),

= (A + BC) · δζ + D · δζ̇, (45)

and
δζ̈ − (A + BC) · δζ − D · δζ̇ = 0, (46)

where D the damping coefficient is chosen such that the system converges as a critically damped system.
Figure 4(a) (resp. 4(b)) shows the sail’s trajectory around L4 (resp. L5) using the linear feedback

controller on the nonlinear system. Figure 5(a) (resp. 5(b)) shows the simulation results for L4 (resp. L5)
using this controller on sail x, y, z-position. The control angle history for the L4 (resp. L5) quasi-periodic
orbits is shown in Figure 6 (a) (resp. 6 (b)). It should be noted that while the z displacement is almost
constant, in-plane dynamics are excited.

V. Conclusion

Summarizing, it can be stated that, following numerical computations around the triangular libration
points in the Earth-Moon system, the linear feedback controller approach based upon the z-dynamics is
successful in maintaining a sail at a specific constant attitude.

As already mentioned, a sufficient condition for displaced periodic orbits based on the sail pitch angle
and the magnitude of the solar radiation pressure for fixed initial out-of-plane distance has been derived.

A particular use of such orbits include continous communications between the equatorial regions of the
Earth and the lunar poles.
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