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Abstract — The problem of variational data assimilation for a nonlinear evolution model is formu-
lated as an optimal control problem to find some unknown parameters of the model. The equation for
the error of the optimal solution is derived through the statistical errors of the input data (background,
observation, and model errors). A numerical algorithm is developed to construct an a posteriori co-
variance operator of the analysis error using the Hessian of an auxiliary optimal control problem based
on the tangent linear model constraints.

The methods of data assimilation (DA) have become an important tool for anal-
ysis of complex physical phenomena in various fields of science and technology.
These methods make it possible to combine mathematical models, data resulted
from instrumental observations, and a priori information. The problems of varia-
tional data assimilation can be formulated as optimal control problems (e.g. [7, 9])
to find unknown model parameters such as initial and/or boundary conditions, right-
hand sides (forcing), and distributed coefficients. A necessary optimality condition
reduces the problem to an optimality system which includes input errors; hence the
error in the optimal solution. The statistical properties of the optimal solution error
are important for estimating the efficiency of data assimilation in terms of reducing
uncertainties in the model parameters and, therefore, in the model output.

The error in the optimal solution can be derived through the errors in the input
data using the Hessian of the cost functional of an auxiliary DA problem. For a de-
terministic case it has been done in [8]. If the errors in the input data are random
and subjected to a normal distribution, then for a linearized problem (tangent linear
approximation of the model) the covariance matrix of the analysis (optimal estima-
tion of the initial condition) error is given by the inverse of the Hessian matrix of
the cost functional (see e.g. [4, 5, 12, 14 –16]). This result was given (see e.g. [12])
for a discretized problem. In [3], a similar result was obtained for the continuous
operator formulation. We showed that in the nonlinear case a posteriori covariance
can often be approximated by the inverse Hessian of the auxiliary control problem
(‘H-covariance’) beyond the validity of the tangent linear hypothesis (TLH).�Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow 119333, Russia
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This paper presents a generalization of the theoretical results reported in [3]
to the case of model errors. The equation for the error of the optimal solution is
derived through the statistical errors of the input data (background, observation,
and model errors). A numerical algorithm is developed to construct an a posteriori

covariance operator of the analysis error using the Hessian of an auxiliary optimal
control problem based on the tangent linear model constraints. Different approaches
to model error formulation in 4D-Var are presented in [1, 17] (see also citations in
[1]).

The paper is organized as follows. In Section 1, we give the statement of the
variational data assimilation problem for a nonlinear evolution model to identify the
model parameters. In Section 2, the equation of the error of the optimal solution is
derived through the errors of the input data. In Section 3, we derive the formulas
and the algorithm for constructing the covariance operator of the optimal solution
errors through the covariance operators of the input errors using the Hessian of the
cost functional of the auxiliary control problem.

1. Statement of the problem

Consider the mathematical model of a physical process that is described by the
evolution problem (

∂ϕ
∂ t

= F(ϕ ;λ )+ f ; t 2 (0;T )
ϕ
��
t=0

= u
(1.1)

where ϕ = ϕ(t) is the unknown function belonging for any t to a Hilbert space
X , u 2 X , F is a nonlinear operator mapping Y �Yp into Y with Y = L2(0;T ;X),k � kY = (�; �)1=2

Y , Yp is a Hilbert space (the space of parameters, or control space),
f 2Y . Suppose that for given u 2 X ; f 2Y and λ 2Yp there exists a unique solution
ϕ 2Y to (1.1). The function λ is assumed to be an unknown parameter of the model.

Let us introduce the functional

S(λ ) = 1

2
(V1(λ �λb);λ �λb)Yp + 1

2
(V2(Cϕ�ϕobs);Cϕ�ϕobs)Yobs

(1.2)

where λb 2Yp is a prior (background) function, ϕobs 2Yobs is a prescribed function
(observational data), Yobs is a Hilbert space (observation space), C : Y ! Yobs is a
linear bounded operator, V1 : Yp ! Yp and V2 : Yobs ! Yobs are symmetric positive
definite operators.

Consider the following data assimilation problem with the aim to identify the
parameter λ : find λ 2 Yp and ϕ 2 Y such that they satisfy (1.1), and the functional
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S(λ ) on the set of solutions to (1.1) takes the minimum value, i.e.8>>><>>>: ∂ϕ
∂ t

= F(ϕ ;λ )+ f ; t 2 (0;T )
ϕ
��
t=0

= u

S(λ ) = inf
v2Yp S(v): (1.3)

We suppose that the solution of (1.3) exists. (Note that the solvability of optimal
control parameter estimation problems has been addressed, e.g., in [2, 11].) The
necessary optimality condition S0(λ ) = 0 reduces problem (1.3) to the optimality
system [13]: 8<: ∂ϕ

∂ t
= F(ϕ ;λ )+ f ; t 2 (0;T )

ϕ
��
t=0

= u
(1.4)( �∂ϕ�

∂ t
� (F 0

ϕ(ϕ ;λ ))�ϕ� = �C�V2(Cϕ�ϕobs); t 2 (0;T )
ϕ���

t=T = 0
(1.5)

V1(λ �λb)� (F 0
λ (ϕ ;λ ))�ϕ� = 0: (1.6)

Here F 0
ϕ(ϕ ;λ ) : Y !Y and F 0

λ (ϕ ;λ ) : Yp!Y are the Frechet derivatives of F with

respect to ϕ and λ , respectively, (F 0
ϕ(ϕ ;λ ))� :Y !Y; (F 0

λ (ϕ ;λ ))� :Y !Yp are their

adjoints, and C� is the adjoint to C defined by (Cϕ ;ψ)Yobs
= (ϕ ;C�ψ)Y ; ϕ 2Y;ψ 2

Yobs.
We assume that system (1.4)–(1.6) has a unique solution. Suppose that λb =

λ̄ +ξ1; ϕobs =Cϕ̄ +ξ2, f = f̄ +ξ3, where ξ1 2 Yp; ξ2 2 Yobs, ξ3 2 Y , and ϕ̄ is the

(‘true’) solution to the problem (1.1) with λ = λ̄ and f = f̄ :8<: ∂ ϕ̄
∂ t

= F(ϕ̄; λ̄ )+ f̄ ; t 2 (0;T )
ϕ̄
��
t=0

= ū: (1.7)

The functions ξ1;ξ2;ξ3 are treated as the errors of the input data λb;ϕobs; f
(‘background’, observation, and model errors, respectively). For V1 and V2 in (1.2),
one usually has V1 = V�1

ξ1
; V2 = V�1

ξ2
, where Vξ is the covariance operator of the

corresponding error ξ .

2. Equation for the optimal solution error

Let us derive the equation for the optimal solution error through input errors. Let
δϕ = ϕ� ϕ̄; δλ = λ � λ̄ . Then, from (1.7) and the optimality system (1.4)–(1.6),
we obtain



∂δϕ
∂ t

Fϕ ϕ̃ λ̃ δϕ Fλ ϕ̃ λ̃ δλ ξ3 t 0;T )
δϕ t 0 0

(2.1)

∂ϕ
∂ t

Fϕ ϕ λ ϕ C V2 Cδϕ ξ2 t 0;T )
ϕ��

t=T = 0
(2.2)

V1(δλ �ξ1)� (F 0
λ (ϕ ;λ ))�ϕ� = 0 (2.3)

where ϕ̃ = ϕ̄ + τ(ϕ� ϕ̄); λ̃ = λ̄ + τ(λ � λ̄)τ 2 [0;1℄:
Note that ϕ̃ = ϕ̄ + τδϕ ; ϕ = ϕ̄ +δϕ , λ̃ = λ̄ + τδλ ; λ = λ̄ +δλ . The system

(2.1)–(2.3) can be written in the form:(
∂δϕ
∂ t

�F 0
ϕ(ϕ̄ ; λ̄ )δϕ = F 0

λ (ϕ̄ ; λ̄ )δλ +ξ3 + ξ̃3; t 2 (0;T )
δϕ jt=0 = 0

(2.4)( �∂ϕ�
∂ t

� (F 0
ϕ(ϕ̄ ; λ̄ ))�ϕ� = �C�V2(Cδϕ �ξ2)+ξ4; t 2 (0;T )

ϕ���
t=T = 0

(2.5)

V1(δλ �ξ1)� (F 0
λ (ϕ̄ ; λ̄ ))�ϕ� = ξ5 (2.6)

where

ξ̃3 = [F 0
ϕ(ϕ̃; λ̃ )�F 0

ϕ(ϕ̄ ; λ̄ )℄δϕ +[F 0
λ (ϕ̃ ; λ̃ )�F 0

λ (ϕ̄; λ̄ )℄δλ

ξ4 = [(F 0
ϕ(ϕ ;λ ))�� (F 0

ϕ(ϕ̄ ; λ̄ ))�℄ϕ�; ξ5 = [(F 0
λ (ϕ ;λ ))�� (F 0

λ (ϕ̄ ; λ̄ ))�℄ϕ�:
Let us introduce the operator H :Yp!Yp defined by the successive solutions of

the following problems:(
∂ψ
∂ t

�F 0
ϕ(ϕ̄ ; λ̄ )ψ = F 0

λ (ϕ̄ ; λ̄ )v; t 2 (0;T )
ψ jt=0 = 0

(2.7)( �∂ψ�
∂ t

� (F 0
ϕ(ϕ̄ ; λ̄ ))�ψ� = �C�V2Cψ ; t 2 (0;T )

ψ���
t=T = 0

(2.8)

Hv=V1v� (F 0
λ (ϕ̄; λ̄ ))�ψ�: (2.9)

Below we introduce four auxiliary operators R1;R2;R3;R4. Let R1 = V1. Let us in-
troduce the operator R2 :Yobs !Yp acting on the functions g 2Yobs according to the
formula

R2g= (F 0
λ (ϕ̄ ; λ̄ ))�θ� (2.10)
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where θ� is the solution to the adjoint problem( �∂θ�
∂ t

� (F 0
ϕ(ϕ̄ ; λ̄ ))�θ� = C�V2g; t 2 (0;T )

θ���
t=T = 0: (2.11)

The operator R3 :Y !Yp is defined on the functions q 2Y as follows:(
∂θ1

∂ t
�F 0

ϕ(ϕ̄ ; λ̄ )θ1 = q; t 2 (0;T )
θ1jt=0 = 0

(2.12)( �∂θ�
1

∂ t
� (F 0

ϕ(ϕ̄ ; λ̄ ))�θ�
1 = �C�V2Cθ1; t 2 (0;T )

θ�
1

��
t=T = 0

(2.13)

R3q= (F 0
λ (ϕ̄; λ̄ ))�θ�

1 : (2.14)

The operator R4 :Y !Yp is defined on the functions h 2Y as( �∂θ�
2

∂ t
� (F 0

ϕ(ϕ̄ ; λ̄ ))�θ�
2 = h; t 2 (0;T )

θ�
1

��
t=T = 0

(2.15)

R4h= (F 0
λ (ϕ̄; λ̄ ))�θ�

2 : (2.16)

From (2.7)–(2.16) we conclude that system (2.4)–(2.6) is equivalent to the single
equation for δλ :

Hδλ = R1ξ1+R2ξ2+R3(ξ3+ ξ̃3)+R4ξ4+ξ5: (2.17)

This is the exact equation for δλ . Under the hypothesis that H is invertible, we get

δλ = T1ξ1+T2ξ2+T3(ξ3+ ξ̃3)+T4ξ4+T5ξ5 (2.18)

where Ti=H�1Ri; i= 1;2;3;4; T5 =H�1; T1 :Yp!Yp; T2 :Yobs!Yp; T3;T4 :Y!Yp:
Note, however, that the functions ϕ ;λ ; ϕ̃; λ̃ in (2.1)–(2.3) depend on ξ1;ξ2;ξ3,

as the result, the terms T3ξ3;T4ξ4;T5ξ5 also depend on ξ1;ξ2;ξ3 (nonlinearly), and it
is not possible to represent δλ through ξ1;ξ2;ξ3 in an explicit form. To derive from
(2.18) the covariance operator of δλ , we need to introduce some approximation of

(2.18). Since ϕ̃ = ϕ̄ + τδϕ ; ϕ = ϕ̄ + δϕ , λ̃ = λ̄ + τδλ ; λ = λ̄ + δλ , we assume
that

T3ξ̃3 � 0; T4ξ4 � 0; T5ξ5 � 0 (2.19)

then (2.18) reduces to

δλ = T1ξ1+T2ξ2+T3ξ3 (2.20)

which is equivalent to the system:



(
∂δϕ
∂ t

�F 0
ϕ(ϕ̄ ; λ̄ )δϕ = F 0

λ (ϕ̄ ; λ̄ )δλ +ξ3; t 2 (0;T )
δϕ jt=0 = 0

(2.21)( �∂ϕ�
∂ t

� (F 0
ϕ(ϕ̄ ; λ̄ ))�ϕ� = �C�V2(Cδϕ �ξ2); t 2 (0;T )

ϕ���
t=T = 0

(2.22)

V1(δλ �ξ1)� (F 0
λ (ϕ̄ ; λ̄ ))�ϕ� = 0: (2.23)

Taking into account the definition of ξ̃3;ξ4;ξ5; it is easily seen that assumption
(2.19) comes from the first-order approximation of the Taylor–Lagrange formula
under the hypothesis that F is twice continuously Frechet differentiable [10]. Using

this formula, the errors ξ̃3;ξ4;ξ5; may be expressed through the second derivatives

of F , and the values of the norms of T3ξ̃3;T4ξ4;T5ξ5 can be estimated, thus giving the
possibility to analyse the approximation error when taking (2.20) instead of (2.18).

The problem (2.21)–(2.23) is a linear data assimilation problem; for fixed λ̄ ; ϕ̄
it is the necessary optimality condition to the following (auxiliary) minimization
problem: Find δλ and δϕ such that8>>><>>>: ∂δϕ

∂ t
�F 0

ϕ(ϕ̄ ; λ̄ )δϕ = F 0
λ (ϕ̄ ; λ̄ )δλ +ξ3; t 2 (0;T )

δϕ jt=0 = 0

S1(δλ ) = inf
v2YpS1(v) (2.24)

where

S1(δλ ) = 1

2
(V1(δλ �ξ1);δλ �ξ1)Yp + 1

2
(V2(Cδϕ �ξ2);Cδϕ �ξ2)Yobs

: (2.25)

The Hessian H of functional (2.25) is defined on v2Yp by (2.7)–(2.9). Note that
for ξ2 = 0 the operator H coincides with the HessianH of the original nonlinear DA

problem on the exact solution λ̄ . The Hessian H acts in Yp as a self-adjoint operator
with the domain of definition D(H) =Yp. Moreover, due toV1;V2, the operator H is
positive definite, and hence invertible.

Note that if the tangent linear hypothesis is valid (e.g. [4]), then for small δϕ ;δλ
we can choose (2.19). However, the transition from (2.18) to (2.20) may not neces-
sarily require the tangent linear hypothesis to be valid.

As follows from (2.20), the influence of the errors ξ1;ξ2;ξ3 on the value of
the error δλ of the optimal solution is determined by the operators H�1R1;H�1R2;
H�1R3, respectively. The values of the norms of these operators can be considered as
sensitivity coefficients: the less is the norm of the operator H�1Ri, the less impact on
δλ is given by the corresponding error ξi. This criterion was used for deterministic
error analysis in [6, 8] with the aim to identify the initial condition. Here, assuming



the statistical structure of the errors ξ1;ξ2;ξ3, we will derive the covariance operator
of the optimal solution (parameter) error through the covariance operators of the
input errors and develop a numerical algorithm to construct the covariance operator
of the optimal solution error using the covariance operators of the input errors.

3. Covariance operator as the inverse Hessian

Consider error equation (2.20), where Ti = H�1Ri; i = 1;2;3; T1 : Yp!Yp;
T2 : Yobs!Yp; T3 : Y!Yp: Below we suppose that the errors ξ1;ξ2;ξ3 are nor-
mally distributed, unbiased, and mutually uncorrelated. By Vξi we denote the co-

variance operator of the corresponding error ξi; i= 1;2;3, i.e. Vξ1
�= E[(�;ξ1)Ypξ1℄;

Vξ2
� = E[(�;ξ2)Yobs

ξ2℄; Vξ3
� = E[(�;ξ3)Yξ3℄, where E is the expectation. By Vδλ we

denote the covariance operator of the optimal solution (analysis) error: Vδλ � =
E[(�;δλ )Ypδλ ℄. From (2.20) we get

Vδλ = T1Vξ1
T �

1 +T2Vξ2
T �

2 +T3Vξ3
T �

3 : (3.1)

To find the covariance operator Vδλ , we need to construct the operators TiVξiT
�
i ;

i= 1;2;3. We proved in [13] that

T1Vξ1
T �

1 +T2Vξ2
T �

2 = H�1 (3.2)

where H is the Hessian of the auxiliary data assimilation problem (2.24)–(2.25)
defined by (2.7)–(2.9). Then,

Vδλ = H�1 +T3Vξ3
T �

3 : (3.3)

Consider now the operator T3 =H�1R3. To construct T3Vξ3
T �

3 , we need to derive
R�

3. For q 2Y; p 2Yp, we have from (2.12)–(2.14):(R3q; p)Yp = ((F 0
λ (ϕ̄ ; λ̄ ))�θ�

1 ; p)Yp =�(C�V2Cθ1;φ)Y =�(V2Cθ1;Cφ)Yobs

where θ1;θ�
1 are the solutions to (2.12)–(2.13), and φ is the solution to (2.7) for

v= p. Further, (R3q; p)Yp =�(θ1;C�V2Cφ)Y = (q;φ�)Y
and R�

3p= φ�, where φ� is the solution to the adjoint problem:( �∂φ�
∂ t

� (F 0
ϕ(ϕ̄ ; λ̄ ))�φ� = �C�V2Cφ ; t 2 (0;T )

φ���
t=T = 0: (3.4)

Let Q = R3Vξ3
R�

3 : Yp ! Yp. The operator Q can be defined as follows: for a given

p 2 Yp find φ as the solution of (2.7) for v = p, find φ� as the solution of (3.4),
and for q =Vξ3

φ� find θ1;θ�
1 as the solutions of (2.12)–(2.13); then put R3Vξ3

R�
3 =(F 0

λ (ϕ̄; λ̄ ))�θ�
1 .



Therefore, T3Vξ3
T �

3 = H�1R3Vξ3
R�3H�1 = H�1QH�1, and Q is defined by the

successive solutions of the following problems (for the given p 2Yp):(
∂φ
∂ t

�F 0
ϕ(ϕ̄; λ̄ )φ = F 0

λ (ϕ̄; λ̄ )p; t 2 (0;T )
φ jt=0 = 0

(3.5)( �∂φ�
∂ t

� (F 0
ϕ(ϕ̄ ; λ̄ ))�φ� = �C�V2Cφ ; t 2 (0;T )

φ���
t=T = 0

(3.6)(
∂θ1

∂ t
�F 0

ϕ(ϕ̄; λ̄ )θ1 = Vξ3
φ�; t 2 (0;T )

θ1jt=0 = 0
(3.7)( �∂θ�

1

∂ t
� (F 0

ϕ(ϕ̄ ; λ̄ ))�θ�
1 = �C�V2Cθ1; t 2 (0;T )

θ�
1

��
t=T = 0

(3.8)

then
Qp= (F 0

λ (ϕ̄ ; λ̄ ))�θ�
1 : (3.9)

The algorithm (3.5)–(3.9) can be used to compute the operator Q numerically.
Then, from (3.3), we come to the main result of the paper.

Theorem 3.1. The covariance operator Vδλ of the optimal solution error is
given by the formula

Vδλ = H�1+H�1QH�1 (3.10)

where H is the Hessian of the functional S1 defined by (2.7)–(2.9), and the operator
Q is defined by (3.5)–(3.9).

It is not difficult to show that Q is the Hessian of the following minimization
problem: Find v 2Yp such that

SQ(v) = inf
p2YpSQ(p) (3.11)

where

SQ(p) = 1

2
(Vξ3

φ�;φ�)Y (3.12)

and φ� is defined through p by the successive solutions of the following problems:(
∂φ
∂ t

�F 0
ϕ(ϕ̄; λ̄ )φ = F 0

λ (ϕ̄; λ̄ )p; t 2 (0;T )
φ jt=0 = 0

(3.13)( �∂φ�
∂ t

� (F 0
ϕ(ϕ̄ ; λ̄ ))�φ� = �C�V2Cφ ; t 2 (0;T )

φ���
t=T = 0: (3.14)
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