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Abstract

It is known that the output from Google’s PageRank algorithm
may be interpreted as (a) the limiting value of a linear recurrence re-
lation that is motivated by interpreting links as votes of confidence,
and (b) the invariant measure of a teleporting random walk that fol-
lows links except for occasional uniform jumps. Here, we show that,
for a sufficiently frequent jump rate, the PageRank score may also be
interpreted as a mean finishing time for a reverse random walk. At a
general step this new process either (i) remains at the current page,
(ii) moves to a page that points to the current page, or (iii) terminates.
The process is analogous to a game of pinball where a ball bounces
between pages before eventually dropping down the exit chute. This
new interpretation of PageRank gives another view of the principle
that highly ranked pages will be those that are linked into by highly
ranked pages that have relatively few outgoing links.

1 The PageRank System

Google’s PageRank algorithm [1] assigns an importance ranking to each
known web page. This information may then be used by a search engine
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that seeks to find relevant and important matches for a user’s query. Sup-
pose there are N web pages and W ∈ R

N×N denotes the adjacency matrix
for the corresponding directed graph, so that wij = 1 if there is a link from
page i to page j and wij = 0 otherwise. Then the ranking ri is assigned to
page i, where r ∈ R

N satisfies
(
I − dW TD−1

)
r = (1 − d)e. (1)

Here

• D = diag(degi), with degi :=
∑N

j=1 wij, is the diagonal out-degree
matrix,

• d is a parameter in (0, 1),

• I ∈ R
N×N is the identity matrix,

• e ∈ R
N has ei = 1 for 1 ≤ i ≤ N .

The vector r may be motivated from a recursive definition of importance that
regards a link from page i to page j as a vote of confidence for page j from
page i [2, 3, 1]. With this viewpoint, d is a damping factor in the resulting
iteration, and r in (1) is the limiting set of rankings. It is also possible
to interpret the normalized vector r/

∑N

i=1 ri as the invariant measure for
a Markov chain by introducing the concept of a teleporting random walk
[2, 3, 1]. Given that we are currently at page i, the next step of this random
walk proceeds as follows:

with probability 1 − d jump to a page chosen uniformly at ran-
dom over the whole web,

with probability dwij/ degi jump to page j.

We note that for the system (1) to be properly defined we require degi 6= 0
for 1 ≤ i ≤ N . Analogously, for the teleporting random walk to be properly
defined we require that every page has at least one outgoing link. In practice,
the “dangling page” issue (degi = 0) must be dealt with, but in this work we
assume for simplicity that D−1 exists. We also assume that wii = 0; that is,
self-links are ignored.
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Both the “votes of confidence” and “teleporting random walk” interpretations
help to characterize the information captured by r. In the next section we
show that there is an alternative formulation that gives further insight into
the PageRank computation. This alternative is also based on a random walk
process, but it differs in that (a) the random walk follows links in the reverse
direction, and (b) the ranking becomes a vector of mean hitting times, rather
than an invariant probability distribution.

2 Mean Hitting Time Formulation

The following lemma defines a Markov chain based on the link matrix W .
We use ‖ · ‖∞ to denote the L∞ norm.

Lemma 2.1. Introduce a state space that consists of the N web pages, ordered
from 1 to N , plus an extra page, labeled N + 1, that we refer to as the exit
page. Define the matrix P ∈ R

(N+1)×(N+1) by

pij = α
wji

degj

+ βδij, for 1 ≤ i, j ≤ N, (2)

pi,N+1 = 1 −
N∑

j=1

pij, for 1 ≤ i ≤ N, (3)

pN+1,j = δN+1,j , for 1 ≤ j ≤ N + 1, (4)

where α > 0 is a fixed parameter, β := (d − α)/d and δij is the Kronecker
delta. If

d ≤
1

‖W T D−1‖∞
, (5)

then for all choices 0 < α < d the matrix P is non-negative and stochastic;
that is, pij ≥ 0 for all 1 ≤ i, j ≤ N+1 and

∑N+1
j=1 pij = 1 for all 1 ≤ i ≤ N+1.

Hence, P is a valid transition matrix for a Markov chain.

Proof. By construction, the required properties hold if
∑N

j=1 pij ≤ 1 for 1 ≤
i ≤ N . In (2), using the definition of β, this gives

α

(
‖W T D−1‖∞ −

1

d

)
≤ 0,
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which follows under (5).

We remark that the final row of P is arbitrary for our purposes—the definition
in (4) is made for concreteness.

The following theorem connects the Markov chain in Lemma 2.1 with PageR-
ank.

Theorem 2.1. Under condition (5), consider the Markov chain defined by
(2)–(4) with any fixed 0 < α < d; that is, let

P (Xn+1 = j, given Xn = i) = pij.

For 1 ≤ i ≤ N , let zi denote the mean hitting time for state N + 1, starting
from state i; that is,

zi := E(hi), where hi := min {n > 0 : Xn = N + 1, given X0 = i} .

Then the vector z ∈ R
N is linearly proportional to the PageRank vector r in

(1), so that,
z

∑N

i=1 zi

=
r

∑N

i=1 ri

.

Proof. It follows from standard Markov chain theory, see for example [4,
Theorem 1.3.5] or [5, Exercise 7, Section 6.3], that z is the minimal non-
negative solution to the linear system

(
I − P̂

)
z = e,

where P̂ ∈ R
N×N has p̂ij = pij. From (2), P̂ = αW T D−1 +βI, so the system

may be rearranged to
(
(1 − β)I − αW TD−1

)
z = e.

Substituting α = (1 − β)d, this system may be written

(
I − dW TD−1

)
z =

1

1 − β
e. (6)

Note that ‖dW TD−1‖1 < 1, so I−dW TD−1 is non-singular, see, for example,
[6, Lemma 2.3.3]. So z is in fact the unique solution to (6). Comparing (6)
with (1) we see that z is a multiple of r, and the result follows.
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To interpret this result, we first note that the probabilities in (2) and (3)
show that the move from page i may be summarized as follows:

with probability β remain at page i,

with probability 1 − β − α
∑N

j=1 wji/ degj jump to exit page,

with probability αwji/ degj jump to page j.

The jump to page j in the third case is possible only if wji 6= 0; that is, only
if page j points to page i. In this case the factor degj in the denominator in-
dicates that such a jump is more likely to take place when j has relatively few
outgoing links. Also, the more nodes there are pointing to page i, the larger∑N

j=1 wji/ degj and hence the smaller the probability 1−β−α
∑N

j=1 wji/ degj

of jumping to the exit page.

The process is generally following reverse links, but also incorporates pausing
at the current page and jumping to the exit page. The mean hitting time
vector z measures the average number of steps that we make, starting from
page i, before we hit the exit page. Theorem 2.1 shows that z and r are
equal, when normalized, and hence a highly PageRanked page is precisely a
starting point that gives high average life expectancy under this process.

A loose analogy for this new Markov chain is a game of pinball on the web
with the ball bouncing between pages, following reverse links (moving from
page i to page j only if page j links to page i) before finally succumbing to
the “game over” page. The ranking ri is the average length of a game that
starts at page i.

This new interpretation of PageRank gives an alternative perspective on the
basic premise that highly ranked pages are well-connected. To get a high
mean hitting time, that is, to have a high average longevity, page i must be
linked to by “long lived” pages that do not give out their links too frivolously.
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