Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

CONTEST : a Controllable Test Matrix Toolbox for MATLAB

Taylor, Alan and Higham, Desmond J., EPSRC Grants (Funder) (2009) CONTEST : a Controllable Test Matrix Toolbox for MATLAB. ACM Transactions on Mathematical Software, 35 (4). 26:1-26:17. ISSN 0098-3500

[img]
Preview
PDF (contest.pdf)
contest.pdf
Accepted Author Manuscript

Download (552kB)| Preview

    Abstract

    Large, sparse networks that describe complex interactions are a common feature across a number of disciplines, giving rise to many challenging matrix computational tasks. Several random graph models have been proposed that capture key properties of real-life networks. These models provide realistic, parametrized matrices for testing linear system and eigenvalue solvers. CONTEST (CONtrollable TEST matrices) is a random network toolbox for MATLAB that implements nine models. The models produce unweighted directed or undirected graphs; that is, symmetric or unsymmetric matrices with elements equal to zero or one. They have one or more parameters that affect features such as sparsity and characteristic pathlength and all can be of arbitrary dimension. Utility functions are supplied for rewiring, adding extra shortcuts and subsampling in order to create further classes of networks. Other utilities convert the adjacency matrices into real-valued coefficient matrices for naturally arising computational tasks that reduce to sparse linear system and eigenvalue problems.