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ABSTRACT

Motivation: Finding a good network null model for protein–protein

interaction (PPI) networks is a fundamental issue. Such a model

would provide insights into the interplay between network structure

and biological function as well as into evolution. Also, network

(graph) models are used to guide biological experiments and

discover new biological features. It has been proposed that

geometric random graphs are a good model for PPI networks. In a

geometric random graph, nodes correspond to uniformly randomly

distributed points in a metric space and edges (links) exist between

pairs of nodes for which the corresponding points in the metric

space are close enough according to some distance norm.

Computational experiments have revealed close matches between

key topological properties of PPI networks and geometric random

graph models. In this work, we push the comparison further by

exploiting the fact that the geometric property can be tested for

directly. To this end, we develop an algorithm that takes PPI

interaction data and embeds proteins into a low-dimensional

Euclidean space, under the premise that connectivity information

corresponds to Euclidean proximity, as in geometric-random graphs.

We judge the sensitivity and specificity of the fit by computing the

area under the Receiver Operator Characteristic (ROC) curve. The

network embedding algorithm is based on multi-dimensional scaling,

with the square root of the path length in a network playing the role of

the Euclidean distance in the Euclidean space. The algorithm

exploits sparsity for computational efficiency, and requires only a

few sparse matrix multiplications, giving a complexity of O(N2) where

N is the number of proteins.

Results: The algorithm has been verified in the sense that it

successfully rediscovers the geometric structure in artificially con-

structed geometric networks, even when noise is added by re-wiring

some links. Applying the algorithm to 19 publicly available PPI

networks of various organisms indicated that: (a) geometric effects

are present and (b) two-dimensional Euclidean space is generally as

effective as higher dimensional Euclidean space for explaining the

connectivity. Testing on a high-confidence yeast data set produced a

very strong indication of geometric structure (area under the ROC

curve of 0.89), with this network being essentially indistinguishable

from a noisy geometric network. Overall, the results add support to

the hypothesis that PPI networks have a geometric structure.

Availability: MATLAB code implementing the algorithm is available

upon request.

Contact: natasha@ics.uci.edu

1 INTRODUCTION

Large, complex networks (also called graphs) arise in a vast

array of applications (Newman, 2003). Efforts to develop

models that describe and summarize complex networks have

focused on various network features such as motifs (Milo et al.,

2002), graphlets (Pržulj et al., 2004) and graphlet degree

distributions Pržulj (2006), clustering coefficients (Watts and

Strogatz, 1998), pathlengths (Watts and Strogatz, 1998) and

degree distributions (Khanin and Wit, 2006; Newman, 2003;

Thomas et al., 2003).

Studying protein–protein interaction (PPI) networks has

recently become possible due to advances in experimental

high-throughput technologies such as yeast-2-hybrid (Y2H)

(Y2H) (Ito et al., 2000; Uetz et al., 2000), tandem affinity

purification (TAP) (Gavin et al., 2002) and high-throughput

mass spectrometric protein complex identification (HMS-PCI)

(Ho et al., 2002). A significant amount of experimental PPI

network data for several organisms has already been generated.

(Gavin et al., 2002; Giot et al., 2003; Ho et al., 2002; Ito et al.,

2000; Krogan et al., 2006; Li et al., 2004; Rual et al., 2005;

Stelzl et al., 2005; Uetz et al., 2000).

Understanding the patterns of intricate wiring in PPI

networks is clearly of great importance for basic biological

understanding, and also has the potential to feed back into the

strategies for optimal interactome detection (Lappe and Holm,

2004). Further benefits of an accurate PPI model include (a)

generation of synthetic datasets of any size in order to test

computational algorithms, (b) detection of false positives and

false negatives, (c) possible insights into the evolutionary

processes that created the network and (d) convenience of

representing complex networks in terms of a small number of

model parameters and thereby distinguishing between networks

for different organisms. Thus, modelling of PPI networks has

become an active research area and several different random

graph models have already been suggested (Grindrod, 2002;

Grindrod and Kibble, 2004; Morrison et al., 2006; Pržulj and

Higham, 2006; Pržulj et al., 2004; Thomas et al., 2003; Vazquez

et al., 2001). Among them are geometric random graphs (Pržulj

et al., 2004, 2006) in which nodes correspond to uniformly

randomly distributed points in a low-dimensional Euclidean

space and edges exist between pairs of nodes in the graph if

the corresponding points in the space are close enough

(within some radius �) according to the Euclidean distance

norm. Other models include: Erdös–Rényi random graphs

(Erdös and Rényi, 1959, 1960), generalized random graphs*To whom correspondence should be addressed.



(Bender and Canfield, 1978), small-world (Watts and Strogatz,

1998), scale-free (Barabási and Albert, 1999; Simon, 1955) and

stickiness (Pržulj and Higham, 2006) networks.

Our research focuses on geometric random graphs. The key

observation that drives our work is that, in contrast with other

putative PPI models, the geometric structure can be examined

constructively. To test whether a given PPI network has a

geometric structure, rather than measuring local and global

statistics of the PPI network and comparing these with local

and global statistics of random geometric graphs, a more direct

question can be addressed:

Can we represent the given PPI network as a geometric

graph by embedding the proteins in R
2, R

3 or R
4 and

finding an � such that proteins are connected if and only if

they are �-close?

There are two main themes to this work. The first theme

is designing and testing an algorithm to discover whether

a network has an underlying geometric structure. This

theme is dealt with in Sections 2–4. The second

theme, covered in Section 5, is to use this tool to study PPI

networks.

We remark that the reverse engineering problem considered

here is related to the general, but less well-defined, tasks of

ordering and clustering (Grindrod, 2002; Grindrod and Kibble,

2004; Titz et al., 2004). Spectral (eigenvalue/eigenvector-based)

algorithms have proved successful for ordering and clustering

(Grindrod and Kibble, 2004; Higham, 2003), and this provides

motivation for a spectral algorithm to address the geometric

embedding issue.

2 THEORETICAL BASIS

As in previous studies (Pržulj, 2006; Pržulj et al., 2004), we

focus on non-periodic, uniform, Euclidean geometric random

graphs in R
2, R

3 and R
4. These are defined as follows [see

Penrose (2003) for further details about geometric random

graphs and their properties]. In the two-dimensional (2D) case,

to create a network (an undirected, unweighted graph) with N

nodes we place a set of N points, fx½i �gNi¼ 1, uniformly in the unit

square; that is, each x[i ]2R
2 has its two components drawn

independently from the uniform (0,1) distribution, and all

points are generated independently. Then, for each pair of

points (x[i ], x[ j ]), we create an edge between nodes i and j of the

geometric random graph if and only if Ix[i ]� x[ j ]I2� �, where I�I2
denotes Euclidean distance and �40 is a parameter. In other

words, nodes i and j are linked if and only if points i and j are

within Euclidean distance �. The process is illustrated in the

upper left picture of Figure 1. The three-dimensional (3D) and

four-dimensional (4D) cases are defined analogously, by

placing points in R
3 and R

4.

Our algorithm makes use of ideas from multi-dimensional

scaling (MDS). We summarize here the necessary details,

referring the reader to (Cox and Cox, 1994) for further

information and historical references, and (Kaski et al., 2003;

Taguchi and Oono, 2004) for examples where MDS has been

used in bioinformatics.

Suppose that, for a set of N objects, we are given the pairwise

Euclidean distances dij between all pairs, and we are asked to

find a set of N vectors fx½i �gNi¼1 in R
m such that

k x½i � � x½ j � k2 ¼ dij; for all i, j: ð1Þ

In other words, our task is to find locations in R
m for the

objects so that the pairwise distances are respected. Finding the

smallest dimension m for which a solution is possible may

be regarded as part of the problem. In our context, we

will think of the dimension as being fixed at 2, 3 or 4,

and we will be seeking N locations fx½i �gNi¼1 for which the

constraints (1) are well approximated in a sense that will be

made precise.

Given data {dij} that respects the triangle inequality, double

centering produces the symmetric, positive semi-definite matrix

A2R
N�N defined by

aij ¼ �1
2

d 2
ij � 1

n

Xn

k¼1

d 2
ik � 1

n

Xn

k¼1

d 2
kj þ 1

n2

Xn

k¼1

Xn

l¼1

d 2
kl

 !
: ð2Þ

Letting X2R
m�N be the matrix whose jth column is x[ j ], it may

then be shown that

XTX ¼ A ) k x½i � � x½ j � k2 ¼ dij; for all i, j: ð3Þ

Now A has the real Schur decomposition (Golub and Van

Loan, 1996) A¼UT
�U, where U2R

N�N is orthogonal (its

rows are eigenvectors of A) and �¼ diag(�i) is diagonal with

diagonal entries ordered high-to-low (these are the

eigenvalues of A). We then see that a solution X in (3) may

be computed as

X ¼ �
1
2U: ð4Þ
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Fig. 1. Upper left: a geometric random graph with N¼ 100 and

�¼ 0.25. Upper right: node placement produced by the algorithm.

Lower left: spurious edges introduced (using �¼ 0.25). Lower

right: missing edges (using "¼ 0.25).



To find an ‘optimal’ approximation such that x[i]2R
r, we

may truncate (4) using only the r most positive eigenvalues, so

that

bX ¼

ffiffiffiffiffi
�1

p
u½1�

T
. . . . . .

.

.

.

ffiffiffiffiffi
�r

p
u½r�

T
. . . . . .

2
664

3
775; ð5Þ

where u[k]2R
N is the kth row of U. This is optimal in the sense

that bX is the closest rank-r matrix to X, in any orthogonally

invariant norm (Golub and Van Loan, 1996).

3 INITIAL ALGORITHM

In this section, we outline the main ideas behind the algorithm

and show how we propose to evaluate its accuracy. Our task is

to embed proteins into R
2, R3 or R

4 given the PPI network.

Rather than Euclidean distances, we have only {0,1} connect-

ivity information. For this reason, we will use a function of the

pathlength in lieu of Euclidean distance. By construction, if

nodes A and B in a geometric graph are connected (pathlength

one), then their Euclidean distance is between zero and �.

Similarly, a pathlength of two indicates that an intermediate

node, C, is �-close to both A and B, with the Euclidean distance

between A and B lying somewhere between � and 2�. In the

absence of exact distance information we will adopt the

heuristic that a ‘typical’ configuration has a right angle for

the angle ABC, and assume that a typical length-two path

corresponds to a distance of
ffiffiffi
2

p
�. The square root can also be

regarded as an attempt to compromise between the opposing

factors where (1) one of the distances A-to-C or C-to-B is much

less than � and (2) the nodes A, B and C are co-linear. More

generally, we will use the square root of the graph pathlength in

lieu of Euclidean distance, so that dij in (1) is taken to beffiffiffiffiffiffiffiffiffiffiffiffi
pathij

p
, where pathij denotes the pathlength between nodes

i and j. In practice, we tried several alternative monotonically

increasing functions of pathij and found that the resulting

algorithm was insensitive to this detail.

A minor issue is the natural scale-invariance of the

problem—re-scaling � and the distances dij does not change

the network. Because the traditional geometric model assumes

that all points lie in the unit disk/cube, we will normalize the

coordinate vectors in (5) so that

ffiffiffiffiffi
�k

p
u
½k�
j �

ffiffiffiffiffi
�k

p
u
½k�
j �mini

ffiffiffiffiffi
�k

p
u
½k�
i

� �

maxi
ffiffiffiffiffi
�k

p
u
½k�
i

� �
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ffiffiffiffiffi
�k

p
u
½k�
i

� � : ð6Þ

We now illustrate these ideas on data arising from a small

geometric graph in R
2 for which the results can be easily

visualized. Here we took N¼ 100 nodes with coordinates drawn

independently from the uniform (0, 1) distribution and joined

nodes that were within Euclidean distance �¼ 0.25. The

resulting graph is shown in the upper left picture of Figure 1.

The six most positive eigenvalues of A in (2), using
ffiffiffiffiffiffiffiffiffiffiffiffi
pathij

p
for

dij, were found to be 39.9, 31.3, 8.7, 7.4, 6.1 and 4.0. If we had

used exact Euclidean distance information then, since we

started with a geometric graph in R
2, it would be possible to

embed exactly in R
2, so that only the first two eigenvalues

would be non-zero. In using pathlength to approximate

Euclidean distance, we have lost this property, but it is

reassuring that the first two eigenvalues remain strongly

dominant. The 2D embedding from the algorithm is shown in

the upper right, and the lower pictures display the false

positives and false negatives arising when a geometric graph

with radius �¼ 0.25 is formed.

To measure the ability of the algorithm to recover the original

network, we present a receiver operator characteristic (ROC)

curve (Bradley, 1997; Tape, 2000) in Figure 2, marked

Geometric/MDS. Here, we increased � from 0 to
ffiffiffi
2

p
in small

increments, and for each � we generated the geometric graph

arising from the MDS node placement as in the upper right

picture of Figure 1. The horizontal axis is then defined as

1� specificity, that is, 1�TN/(TNþFP), and the vertical axis is

defined as sensitivity, that is TP/(TPþFN). Here TN denotes

the number of true negatives that is, the number of distinct pairs

i and j for which there is no edge in the reverse engineered graph

and there is no edge in the original graph. Similarly, TP, FP and

FN denote the number of true positives, false positives and false

negatives, respectively. With �¼ 0, we place no edges in the

network, and hence we have perfect specificity, 1�TN/

(TNþFP)¼ 0, but the worst possible sensitivity, TP/

(TPþFN)¼ 0. The other extreme � ¼
ffiffiffi
2

p
connects all nodes,

giving the worst possible specificity, 1�TN/(TNþFP)¼ 1, but

perfect sensitivity, TP/(TPþFN)¼ 1. Increasing � always

improves sensitivity at the expense of specificity. Good

performance corresponds to having a curve that rises rapidly,

containing points close to x¼ 0, y¼ 1, and the area under the

curve (AUC) is a widely-used measure of quality (Bradley, 1997;

Tape, 2000). In Figure 2 we have an AUC of 0.988 for MDS

curve.

For comparison, we have added two more ROC curves in

Figure 2. First, for the same network, we show the effect of

‘randomly guessing’ links. Here, we take a biased coin that

lands heads with probability p. For each pair of nodes we flip

the coin and predict a link if the coin lands heads. As p is varied

this leads to the ROC curve labelled Geometric/Coin Flip,

which has an AUC of 0.47. Next, we generated a network with
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100 nodes that did not have an underlying geometric structure.

Instead we used an Erdös–Rényi model (Erdös and Rényi,

1959, 1960) as in (Pržulj et al., 2004) where, for each pair of

nodes, a link was inserted with independent probability 0.8.

Applying our MDS-based algorithm produced the ROC curve

labelled Erdos/MDS, which has an AUC of 0.64.

4 PRACTICAL ALGORITHM

For PPI networks, where the number of nodes is typically in the

thousands, we propose setting

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
pathij

p
; if pathij � K;

Kmax; otherwise:

(
ð7Þ

where K and Kmax are parameters in the algorithm. Here we

have introduced a cutoff K with longer pathlengths rounded

to a single value Kmax. Using the cutoff K in (7), rather than

computing and recording the pathlength for all pairs, has three

main advantages.

(1) By choosing K relatively small, the resulting algorithm

can exploit sparsity in the original network. This is

explained further below.

(2) The case where the network consists of two or more

disconnected components (i.e. some pathlengths are

infinite) is conveniently handled.

(3) The cutoff reflects the fact that for a true geometric graph

in the unit cube, there is an upper bound on the

maximum Euclidean distance.

We remark that, intuitively, it is clear that accurate information

concerning near-neighbours is more important than informa-

tion concerning distant nodes. In our experiments, we found

that the results from the algorithm were not sensitive to the

choice of K and Kmax, although, as explained below, the

computational benefits can be dramatic.

Repeating the experiment in Figure 1, but with parameters

K¼ 4 and Kmax¼ 5, gave rise to leading eigenvalues 38.3, 30.1,

10.7, 8.9, 6.2 and 3.8, and an area under the ROC curve of

0.984, showing that retaining level-four path information is

adequate in this case. Similar effects were observed more

generally, so we used these values in all computations.

We now explain how our distance measure (7) allows sparsity

to be exploited. To measure complexity, we assume that the

number of connections per protein is fixed, independently of N,

and we consider asymptotics as N!1. We assume that

subspace iteration (Golub and Van Loan, 1996) is used to

compute eigenpairs of the matrix A in (2). The significant

computational task is then the formulation of a matrix-vector

product; given some v2R
N compute the product Av. By

construction the elements d 2
ij in (2) now come from a matrix of

the form PþKmax 11
T, where 12R

N denotes the vector of 1’s,

and hence 11T2R
N�N is the matrix of 1’s, and P has values

pij ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
pathij

p
� Kmax; if pathij � K;

0; otherwise.

(
ð8Þ

Hence, pij is non-zero only when there is a path of length �K

between proteins i and j. In other words, P has the same

sparsity pattern as the Kth power of the adjacency matrix for

the network. For a fixed value of K, this means that P has the

same sparsity as the original network. It then follows that the

product Av may be written

Av ¼ �1
2
Pv� hvipsum þ �

N
hvi � vTp

N

� �
1

� �
; ð9Þ

where psum2R
N has ð psumÞi ¼

PN
j¼1 pij, h v i 2R denotes the

average value vT1/N and �2R denotes
PN

i¼1

PN
j¼1 pij.

It follows that each step of the subspace iteration involves a

matrix–vector multiply with a sparse matrix. In our computa-

tions, we stopped the iteration when successive eigenvector

approximations agreed to within 10�3 in Euclidean norm.

Overall, given a protein–protein interaction network, our

algorithm may be summarized as:

(1) Compute the pathlengths up to length K.

(2) Compute the first two, three or four most positive

eigenvalues of A, and the corresponding eigenvectors.

(3) Embed the nodes in R
2, R3 or R4 using (5) and (6).

(4) Examine the accuracy of the embedding as � is varied.

To measure computational cost we note that a sparse matrix–

vector multiply Av is an O(N) process. Step 1 of the algorithm

can be achieved by forming the matrices A, A2, A3, . . . ,AK,

which has, at most, an O(N2) operation count. Step 2 costs

O(N ) per iteration of the subspace iteration algorithm. Step 3 is

negligible. In Step 4, having generated the protein locations,

computing the pairwise distance data {kx[i ]� x[ j ]k2}i6¼j, so that

choices for � can be tested, is an O(N2) task.

5 DATA AND RESULTS

5.1 PPI networks

Using high-throughput techniques such as Y2H (Ito et al.,

2000; Uetz et al., 2000), TAP (Gavin et al., 2002) and HMS-PCI

(Ho et al., 2002), a significant amount of experimental PPI data

has been generated. Our algorithm has been applied to 19 PPI

networks of four eucaryotic organisms: yeast Saccharomyces

cerevisiae, fruitfly Drosophila melanogaster, nematode worm

Caenorhabditis elegans and human. We used nine yeast, one

fruitfly, three worm and six human PPI networks obtained

from different studies that used different PPI detection

techniques, as well as from curated databases (described

below).

The high-confidence part of the yeast PPI network described

by (von Mering et al., 2002) is henceforth denoted by ‘YHC’.

This dataset is discussed in more detail in the next subsection.

We denote by ‘Y11K’ the yeast PPI network defined by the top

11 000 interactions in the (von Mering et al., 2002) classifica-

tion. ‘YIC’ denotes the ‘core’ yeast PPI network from (Ito et al.,

2000) Y2H study. We denote by ‘YIP’ the entire yeast PPI

network from (Ito et al., 2000). ‘YU’ stands for yeast PPI

network from (Ito et al., 2000). Y2H study. ‘YICU’ is the union

of yeast PPI networks from Ito et al. (2000) and Uetz et al.

(2000). We denote by ‘YD’ the yeast PPI network obtained

from the database of interacting proteins (DIP) (Xenarios et al.,

2000). ‘YK’ is the yeast PPI network from (Krogan et al., 2006)



obtained by TAP and matrix-assisted laser desorption/ioniza-

tion-time of flight mass spectrometry and liquid chromatogra-

phy tandem mass spectrometry. ‘YM’ is the yeast PPI network

from MIPS (Mewes et al., 2002). ‘FH’ is the high-confidence

part of the fruitfly PPI network from (Giot et al., 2003) in

which a two-hybrid-based protein-interaction map of the fly

proteome has been presented.

‘WE’ is the entire worm PPI network published by Li et al.,

(2004), where more than 4000 interactions were identified from

Y2H screens, and ‘WC’ denotes the ‘core’ part of the worm PPI

network also from (Li et al., 2004). By ‘WS’ we denote the

worm PPI network from (Zhong and Sternberg, 2006), where

prediction techniques have been used to generate this PPI

network, consisting of 18 183 interactions.

The human PPI network from (Stelzl et al., 2005), obtained

by Y2H screens, which contains high- medium- and low-

confidence data is denoted by ‘HSL’, its part that contains

only high- and medium-confidence data ‘HSM’, and only high-

confidence interaction from this study by ‘HSH’. ‘HR’ is the

human PPI network from (Rual et al., 2005), also obtained by

Y2H screens. By ‘HH’ we denote the human PPI network from

the human protein reference database (HPRD) (Peri et al.,

2004). We denote by ‘HM’ the human PPI network from

MINT (Zanzoni et al., 2002).

5.2 Results

Using the algorithm described in section 4, we embedded these

networks in 2D, 3D and 4D space. The resulting areas under

the ROC curves are shown in Figure 3. One striking feature is

that using only two dimensions typically gives results that are as

good as the cases where dimension three or four is used. Of the

19 PPI networks, all but the YM 2D case produce an area

under the ROC curve >0.6, and 11 networks have areas under

the ROC curves above 0.75. Note that some of the human PPI

networks (Rual et al., 2005; Stelzl et al., 2005) that we analysed

come from the first Y2H studies of the human interactome and

thus are considered to be of low confidence (‘HR’, ‘HSL’,

‘HSM’, and ‘HSH’ in Figure 3). We expect that low areas under

the ROC curve for these networks are due to the noise present

in them. Human PPI networks from curated databases MINT

and HPRD are of higher confidence than the PPI networks

from Y2H studies resulting in high areas under the ROC curve

(see ‘HM’ and ‘HH’ in Figure 3).

5.3 Further tests

5.3.1 High-confidence data Yeast S.Cerevisiae is an organ-

ism important for research in human biology. Von Mering

et al., (2002) performed a systematic synthesis and evaluation of

PPIs obtained using the main high-throughput PPI detection

methods for yeast. They integrated 78 390 interactions between

5321 yeast proteins, out of which 2455 are identified by more

than one PPI detection method (von Mering et al., 2002). This

high-confidence PPI network, which has 2455 interactions

amongst 988 proteins, appears as YHC in Figure 3. The actual

areas under the ROC curve are 0.892, 0.893, 0.896 for

embedding into 2D, 3D and 4D space, respectively. This

represents a very good match to the geometric model and,

reassuringly, it is the best over all the datasets. Hence, in our

further investigations we will focus on this YHC data.

5.3.2 Geometric structure in other random network

models Modelling real-world networks by various types of

random graphs began with the work of Erdös and Rényi. One

classical random graph model connects nodes uniformly at

random with some fixed probability (Erdös and Rényi, 1959,

1960). This simple model does not describe many important

properties of real-world networks such as degree distribution

and clustering coefficients. Efforts to improve the applicability

of these networks produced generalized random graphs (Bender

and Canfield, 1978) in which the edges are chosen at random as

in Erdös–Rényi graphs, but the degree distribution matches the

degree distribution of the real network. Attempts to further

improve global properties of the real-world networks led to

numerous types of models such as small-world (Watts and

Strogatz, 1998) and scale-free (Barabási and Albert, 1999;

Simon, 1955) networks. Other models have been constructed

with the idea of simulating some biological and topological

properties of real biological networks, e.g. stickiness model

(Pržulj and Higham, 2006).

In Figure 4 we present the results of an experiment to

measure the extent to which several random graph models can

produce a geometric structure. Here, seven types of random

networks have been generated corresponding to, i.e. having the

same number of nodes and edges as, the dataset YHC: Erdös–

Rényi random graphs (denoted by ‘ER’), random graphs with

the same degree distribution as the data (denoted by ‘ER-DD’),

2D geometric random graphs (‘GEO-2D’), 3D geometric

random graphs (‘GEO-3D’), 4D geometric random graphs

(‘GEO-4D’), scale-free Barabasi–Albert model graphs (‘SF’)

and stickiness model graphs (‘STICKY’). Note that ‘ER-DD’,

‘SF’, and ‘STICKY’ are three different types of scale-free

networks. For each type, 30 networks have been generated,

embedded in 2D, 3D and 4D space, and the area under the

ROC curve has been computed. Results are also shown for

networks obtained from randomly rewiring 10% (‘G-10P’),

20% (‘G-20P’), and 30% (‘G-30P’) of edges in a 3D geometric
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Fig. 3. Values of the areas under the ROC curve arising from

embedding nine yeast, one fruitfly, three worm, and six human PPI

networks into 2D, 3D and 4D Euclidean space.
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random graph, in an attempt to account for false positives and

false negatives (further details in Section 5.3.3). The mean

and the SD for AUC of these networks are shown in Figure 4,

and we see that the algorithm clearly distinguishes between

geometric and non-geometric models including scale-free net-

works. In other words, even allowing for noise in the data, the

lack of geometric structure in the other models is apparent.

5.3.3 Robustness of our approach Unfortunately, noise is

inherent in all current PPI networks (Mrowka et al., 2001). On

one hand, PPI datasets contain a large percentage of false

positive interactions. One example is when proteins interact

indirectly, i.e. through mediation of one or more molecules, but

this is recorded as a direct physical interaction by the

experimental method. On the other hand, imperfect experi-

mental methods lead to false negative interactions. Different

biochemical techniques produce different sets of false positives

and negatives. Thus, trying to find high-confidence PPI

networks by overlapping multiple datasets may result in dis-

carding many real interactions.

Since the PPI networks are thought to contain a large

percentage of false negatives and a large percentage of false

positives, we tested with simulated noise. From Figure 4, we see

that for randomly generated GEO-3D graphs the embedding

into 3D space is excellent. At the right in Figure 4 we show the

effect of rewiring 10%, 20% and 30% of the edges in these

GEO-3D graphs. The resulting networks are denoted by

G-10P, G-20P and G-30P, respectively. We generated 30

networks of each type (corresponding to the percentages of

rewired edges), embedded them in 2D, 3D and 4D space, and

computed the areas under the ROC curve. The mean area

under the ROC curve for the 10% rewired GEO-3D networks

are: 0.811, 0.875 and 0.918, corresponding to 2D, 3D and 4D

embeddings, respectively.

In Figure 5, ROC curves corresponding to embeddings into

3D Euclidean space of the high-confidence yeast PPI network

(denoted by YHC) and the model networks ER, ER-DD,

GEO-3D and SF generated with the same number of nodes and

edges as the YHC network, are presented in the same graph for

comparison. Also, we included one GEO-3D network with

10% rewired edges (denoted by GEO-3D-10%). We see low

areas under ROC curves for random (ER) and scale-free

(ER-DD and SF) network types. We also see that the YHC–

ROC curve is consistent with that of a noisy geometric

network. So, overall, from the ROC curve perspective, any

departure from geometric structure in the PPI network can be

explained by the inherent noise.

6 DISCUSSION

It has already been established that the random geometric

graph model gives an excellent fit for various global and local

measures of PPI networks such as pathlengths, clustering

coefficients, relative graphlet frequencies (Pržulj et al., 2004),

and graphlet degree distributions (Pržulj, 2006). The main idea

of this work is to test directly whether PPI networks are

geometric by embedding them into a low-dimensional

Euclidean space. We developed an algorithm that takes PPI

network data and attempts to recover the geometric network

structure, using specificity and sensitivity measures to quantify

the results. The algorithm was demonstrated to work well on

artificially constructed geometric random networks, even in the

presence of noise. We applied the algorithm to the 19 PPI

networks of various organisms (yeast, fruitfly, worm and

human) and seven types of random network models including

three types of scale-free networks. Also, we compared these

results with the results of rewired geometric networks, where

rewiring simulates the noise that is present in the real PPI

network data. The results we obtained in this work yield

support to the hypothesis that the structure of PPI networks is

consistent with the structure of a noisy geometric random

graph. The fact that the algorithm produced a better fit on

high-confidence PPI data suggests that the algorithm could be
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Fig. 4. Means and SDs of the areas under the ROC curve arising from

embedding seven types of random networks and three types of rewired

geometric random networks (which are used to simulate the noise

present in the real data) into 2D, 3D and 4D Euclidean space.
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used to help discover false positives and false negatives in PPI

networks.
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