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Abstract

Markov jump processes are widely used to model interacting species in
circumstances where discreteness and stochasticity are relevant. Such mod-
els have been particularly successful in computational cell biology, and in
this case, the interactions are typically first-order. The Chemical Langevin
Equation is a stochastic differential equation that can be regarded as an
approximation to the underlying jump process. In particular, the Chemi-
cal Langevin Equation allows simulations to be performed more effectively.
In this work, we obtain expressions for the first and second moments of
the Chemical Langevin Equation for a generic first-order reaction network.
Moreover, we show that these moments exactly match those of the under-
lying jump process. Hence, in terms of means, variances and correlations,
the Chemical Langevin Equation is an excellent proxy for the Chemical
Master Equation. Our work assumes that a unique solution exists for the
Chemical Langevin Equation. We also show that the moment matching re-
sult extends to the case where a gene regulation model of Raser and O’Shea
(Science, 2004) is replaced by a hybrid model that mixes elements of the
Master and Langevin equations. We finish with numerical experiments on
a dimerization model that involves second order reactions, showing that
the two regimes continue to give similar results.
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1 Motivation

A system of chemical reactions at thermal equilibrium is traditionally modelled
as a collection of ordinary differential equations (ODEs), using the law of mass
action. In this so-called reaction rate equation (RRE), each component repre-
sents the real-valued concentration of one species. By contrast, the Chemical
Master Equation (CME) models the system as a discrete, integer-valued Markov
process and consists of a (typically massive) ODE where each component rep-
resents the probability of one particular state. The pioneering work of Gillespie
[1, 2] showed how the CME can be derived from first principle arguments and
how the RRE arises from the CME in the thermodynamic limit. For the large
number of molecules involved in typical chemical reactions, the RRE is a per-
fectly adequate model. However, there are some application areas, most notably
in molecular biology [3, 4, 5, 6], where the numbers of molecules present is so
small that the RRE model is inappropriate. In these cases, stochastic models
are relevant and noise is typically summarized through means, correlations and
variances [7, 8, 9, 10, 11].

From a computational viewpoint, it is possible to simulate from the CME in a
pathwise sense using the Stochastic Simulation Algorithm (SSA), also known as
Gillespie’s algorithm [1, 2]. However, since this algorithm records every reaction,
it is usually prohibitively expensive for even modest systems and time intervals.
The Chemical Langevin Equation (CLE), introduced by Gillespie [12], can be
regarded as a compromise between the CME and RRE. The CLE is a stochastic
differential equation (SDE) where each component represents the level of one
species as a time-dependent, real-valued, random variable. The CLE can be
derived from the CME by making certain modelling assumptions and, in turn,
the RRE can be derived from the CLE by further simplification. Simulating with
the CLE is much more computationally attractive than with the CME, and hence
it is important to understand what circumstances are needed for the CLE to be
a good model. In this work, we contribute to this topic by analysing the first and
second moments, and correlations, of the CLE for a generic class of first-order
reaction networks that encompasses many models in cell biology. Using Ito’s
Lemma we derive ODEs for these quantities. Gadgil et al. [7] recently presented
ODEs for the corresponding first and second moments and correlations of the
CME. Our main finding is that these quantities match in the two regimes, despite
the fact that one is inherently discrete and the other inherently continuous. This
work was motivated by the analysis in [13], which showed the first and second
moment matching result for a specific gene regulation network. We also note
that Gillespie [14, Chapter 6] proved this equivalence for scalar problems and
showed that third and higher moments do not match. Our contribution here is
to extend this work to general first-order networks and to a hybrid model. In
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particular, for the hybrid model, we extend the work in [8] by showing that (a)
Ito’s lemma allows us to study moments for all time, not just at steady state, and
(b) including a diffusion approximation allows us to recover the exact first and
second moments. Overall, we regard this work as initial evidence that the CLE
regime is useful, and we point out that further analysis to compare the CME and
CLE in the presence of bi-molecular reactions would be very desirable.

Section 2 very briefly sets up the CME and CLE models. In section 3 we describe
the four reaction types that make up the first-order networks defined by Gadgil
et al. in [7] and we state the ODEs that those authors derived for the means,
variances and correlations. The corresponding first-order network CLE is studied
in section 4. By applying Ito’s lemma we obtain generic ODEs for the means,
variances and correlations and find that they match those for the CLE precisely.
In section 5 we show that this moment matching extends to a gene regulation
model where a typically small collection of genes that can switch between active
and inactive states, are modeled in the CME regime whereas mRNA and proteins,
typically more abundant, are modeled via the CLE. The resulting switching SDE
remains amenable to a generalized version of Ito’s lemma. In section 6 we give
simulation results for a dimerization model that involves second-order reactions
and we compare the CME and CLE behaviour.

2 Stoichiometry

This section very briefly introduces the CME and CLE models. For derivations
and further details we refer the reader to [1, 2, 12, 15, 4, 5, 6].

Suppose we have chemical species S1, S2, . . . , SN taking part in M different types
of chemical reaction, or reaction channels. We will let X(t) ∈ R

N denote the
state vector, so Xi(t) records the number of molecules of species i present at
time t. This value will clearly be a non-negative integer. We assume that X(0)
is known. Associated with each of the M possible reactions is a stoichiometric
vector, νj ∈ R

N , whose ith component is the change in the number of Si molecules
caused by the jth reaction. So one reaction of type j has the effect of changing
the state vector from X(t) to X(t) + ν j. Each reaction also has a propensity
function, aj(X(t)). Here, the probability that the jth reaction takes place in the
infinitesimal time interval [t, t + dt) is taken to be aj(X(t))dt. Letting P (x, t)
denote the probability that X(t) = x, the CME then takes the form

dP (x, t)

dt
=

M∑

j=1

(aj(x− νj)P (x− νj, t)− aj(x)P (x, t)) . (1)
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We emphasize that in this setting X(t) is a non-negative integer-valued random
variable, and the CME is a (typically massive) ODE showing how the probabilities
evolve for each possible state.

In the CLE framework, we represent the amount of species i present at time t
by a real-valued random variable Yi(t). The state vector Y(t) ∈ R

N is then a
real-valued stochastic process. The CLE, which describes the evolution of Y(t),
takes the form of an Ito Stochastic differential equation [16]

dY(t) =
M∑

j=1

νjaj(Y(t))dt +
M∑

j=1

νj

√
aj(Y(t)) dWj(t). (2)

Here, the Wj(t) are independent scalar Brownian motions.

Throughout this work we assume that the SDE (2) has a well-defined, unique
solution for which all first and second moments and correlation coefficients exist.
Establishing conditions under which this property holds appears an open problem.

3 First-Order Networks

We now consider the four categories of reaction that Gadgil et al. [7] used to
define a general class of first-order reaction networks.

Production From a Source, ∅ ks

i→ Si: Here, species i is created according to a
rate constant ks

i. This process does not depend on the current state of the
system. The stoichiometric vector takes the form ν = ei, where ei ∈ R

N

is the vector of zeros, except for a 1 in position i. The corresponding
propensity function is ks

i .

Degradation, Si

kd

i Xi→ ∅: Here, species i is degraded at a rate proportional to its
current state, with an associated proportionality constant kd

i . The stoichio-
metric vector takes the form ν = −ei, with propensity function kd

i Xi(t).

Conversion, Sj

kcon

ij Xj→ Si: Here, species j is converted to species i at a rate pro-
portional to the current state of Sj , with an associated proportionality
constant kcon

ij . The stoichiometric vector takes the form ν = −ej + ei, with
propensity function kcon

ij Xj(t).

Catalytic Production From a Source, ∅
kcat

ij Xj→ Si: Here, species i is created
at a rate proportional to the current state of Sj, with an associated propor-
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tionality constant kcat
ij . The stoichiometric vector takes the form ν = ei,

with propensity function is kcat
ij Xj(t).

Overall, there are N possible reactions involving production from a source, N
possible degradation reactions, N(N − 1) possible conversion reactions and N 2

possible catalytic production reactions. If any reaction is not present, then, of
course, we simply set the corresponding rate constant to zero. Conversion from
i to i does not make sense in this context, but it is convenient to define rate
constants kcon

ii , all of which are zero. In this way, we have M := N+N+N 2+N2 =
2N(1 + N) reactions.

Gadgil et al. used a moment generating function approach to analyse the CME
(1) for this class of reactions. Letting M(t) = E [X(t)] ∈ R

N denote the mean of
the state vector X(t) and V(t) ∈ R

N×N denote a matrix of correlations defined
by

Vkl(t) =

{
E [Xk(t)Xl(t)] , l 6= k,
E [Xk(t)

2]− E [Xk(t)] , l = k,

they showed that [7, equation (28)]

dM(t)

dt
= KM(t) + Ks1 (3)

and [7, equation (29)]

dV(t)

dt
= KV(t) + (KV(t))T + Γ(t) + ΓT (t). (4)

Here, K = Kcon + Kcat −Kd, with Kd = diag(kd
i ), (Kcat)ij = kcat

ij , and

(Kcon)ij =

{
kcon

ij , i 6= j,

−∑N

k=1 kcon
kj , i = j,

Ks = diag(ks
i), 1 ∈ R

N denotes the vector with all components equal to 1, and

Γij(t) =
(
(Kcat)ij + (Ks)ii

)
Mj(t).

4 Moments for the Chemical Langevin Equa-

tion

For the general first-order network defined in section 3, we will write the CLE
(2) in the form

dY(t) = b (Y(t)) dt + σ (Y(t)) dW(t), (5)
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where Y(t) ∈ R
N , b : R

N → R
N , σ : R

N → R
N×M and W(t) ∈ R

M . There
is one Brownian motion for each of the M reactions, and we order them in a
manner that follows naturally from the description in section 3, so that

W(t) =




Ws(t)
Wd(t)
Wcon[1](t)
Wcon[2](t)

...

...
Wcon[N ](t)
Wcat[1](t)
Wcat[2](t)

...

...
Wcat[N ](t)




. (6)

Here,

Ws(t) ∈ R
N has ith element W s

i (t) corresponding to the source reaction ∅ ks

i→ Si,

Wd(t) ∈ R
N has ith element W d

i (t) corresponding to the degradation reaction

Si

kd

i Xi→ ∅,

Wcon[j](t) ∈ R
N has ith element W

con[j]
i (t) corresponding to the conversion re-

action Sj

kcon

ij Xj→ Si, and

Wcat[j](t) ∈ R
N has ith element W

cat[j]
i (t) corresponding to the catalytic reaction

∅
kcat

ij Xj→ Si.

Taking account of the precise form of the propensity functions, we find that the
CLE (2) has kth component

dYk(t) =
{

ks
k − kd

kYk(t) +

N∑

r=1

kcon
kr Yr(t)−

N∑

r=1

kcon
rk Yk(t) +

N∑

r=1

kcat
kr Yr(t)

}
dt

+
√

ks
kdW s

k(t)−
√

kd
kYk(t)dW d

k (t) +

N∑

r=1

√
kcon

kr Yr(t)dW
con[r]
k (t)

−
N∑

r=1

√
kcon

rk Yk(t)dW con[k]
r (t) +

N∑

r=1

√
kcat

kr Yr(t)dW
cat[r]
k (t). (7)
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It follows that the drift coefficient b (Y(t)) in (5) has kth component given by

bk (Y(t)) = ks
k − kd

kYk(t) +
N∑

r=1

kcon
kr Yr(t)−

N∑

r=1

kcon
rk Yk(t) +

N∑

r=1

kcat
kr Yr(t). (8)

In order to apply Ito’s lemma, we must characterise the matrix a (Y(t)) :=
σ (Y(t))σ

T (Y(t)) ∈ R
N×N . The diffusion coefficient σ (Y(t)) ∈ R

N×M in (5)
has the general form
[

T s ... T d ... T con[1] ... · · · ... T con[N ] ... T cat[1] ... · · · ... T cat[N ]

]
,

and hence

a (Y(t)) = T s (T s)T +T d
(
T d
)T

+
N∑

r=1

T con[r]
(
T con[r]

)T
+

N∑

r=1

T cat[r]
(
T cat[r]

)T
, (9)

where each submatrix is of dimension N × N . More specifically, the source
production and degradation reactions give rise to diagonal submatrices of the

form T s = diag
(√

ks
k

)
and T d = diag

(√
kd

kYk(t)
)
. Hence, T s (T s)T = diag (ks

k)

and T d
(
T d
)T

= diag
(
kd

kYk(t)
)
. For the conversion reactions, the block T con[1]

relates to reactions where species S1 is converted to another species, and has the
form




0 −
√

kcon
21 Y1(t) −

√
kcon

31 Y1(t) · · · · · · −
√

kcon
N1Y1(t)√

kcon
21 Y1(t) √

kcon
31 Y1(t)

. . .
. . .

. . . √
kcon

N1Y1(t)




.

Generally, the block T con[r] relates to conversion reactions that remove species Sr,
and has the form



√
kcon

1r Yr(t) √
kcon

2r Yr(t)
. . . √

kcon
r−1,rYr(t)

−
√

kcon
1r Yr(t) −

√
kcon

2r Yr(t) · · · −
√

kcon
r−1,rYr(t) 0 −

√
kcon

r+1,rYr(t) · · · −
√

kcon
N,rYr(t)√

kcon
r+1,rYr(t)

. . . √
kcon

Nr Yr(t)




.
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In words, T con[r] has all zeros in its rth column. All other columns have exactly

two possible nonzeros; column j has
√

kcon
jr Yr(t) in position (j, j) and−

√
kcon

jr Yr(t)

in position (j, r). It follows that T con[r]
(
T con[r]

)T
is given by

Yr(t)




kcon
1r −kcon

1r

kcon
2r −kcon

2r

. . .
...

kcon
r−1,r −kcon

r−1,r

−kcon
1r −kcon

2r · · · −kcon
r−1,r

∑N

s=1 kcon
sr −kcon

r+1,r · · · −kcon
Nr

−kcon
r+1,r kcon

r+1,r
...

. . .

−kcon
Nr kcon

Nr




.

For catalytic production, the general block T cat[r] arises from reactions where

species Sr acts as a catalyst, and is diagonal, of the form diag
(√

kcat
kr Yr(t)

)
.

Hence T cat[r]
(
T cat[r]

)T
= diag (kcat

kr Yr(t)).

Using these expressions in (9), it follows that a (Y(t)) := σ (Y(t))σ
T (Y(t)) ∈

R
N×N has diagonal element

aii (Y(t)) = ks
i + kd

i Yi(t) +

N∑

j=1

(
kcon

ij Yj(t) + kcon
ji Yi(t)

)
+

N∑

j=1

kcat
ij Yj(t) (10)

and off-diagonal element

aij (Y(t)) = −kcon
ij Yj(t)− kcon

ji Yi(t), for i 6= j. (11)

We are now in a position to examine the moments of Y(t).

Theorem 4.1. Consider any first-order reaction network for which a unique
solution to (2) exists along with the quantities E [Yk(t)] and E [Yk(t)Yl(t)] for all
1 ≤ k, l ≤ N . Then all first and second moments and correlations for the CLE
match those for the CME, that is, E [Xk(t)] = E [Yk(t)] and E [Xk(t)Xl(t)] =
E [Yk(t)Yl(t)], for all 1 ≤ k, l ≤ N .

Proof
We see from (8) that the drift is linear, and hence taking expectations in (5) we
obtain the ODE

dE [Y(t)]

dt
= b (E [Y(t)]) .
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Comparing (3) and (8) we see that E [X(t)] and E [Y(t)] satisfy the same ODE.
We note that in this first-order case, the ODE for the means is precisely the RRE
system, and it is well known that the RRE then matches the mean of the CME;
see [7] for a comprehensive historical overview.

Next, we write the correlation result from [7] in a more convenient form. Letting
U(t) ∈ R

N×N denote the symmetric matrix with Ukl = E [Xk(t)Xl(t)] for k 6= l
and Ukk = E [X2

k(t)], so that U(t) = V(t) + diag (M(t)), it follows from (3) and
(4) that

dUkl(t)

dt
= ks

kMl(t)− kd
kUlk(t) +

N∑

r=1

kcon
kr Ulr(t)

− Ulk(t)

N∑

r=1

kcon
rk − kcon

kl Ml(t) +

N∑

r=1

kcat
kr Ulr(t)

+ ks
lMk(t)− kd

l Ukl(t) +
N∑

r=1

kcon
lr Ukr(t)

− Ukl(t)
N∑

r=1

kcon
rl − kcon

lk Mk(t) +
N∑

r=1

kcat
lr Ukr(t), for k 6= l, (12)

and

dUkk(t)

dt
= 2ks

kMk(t)− 2kd
kUkk(t) + 2

N∑

r=1

kcon
kr Ukr(t)− 2Ukk(t)

N∑

r=1

kcon
rk

+ 2
N∑

r=1

kcat
kr Ukr(t) + ks

k + kd
kMk(t)

+

N∑

r=1

kcon
kr Mr(t) + Mk(t)

N∑

r=1

kcon
rk +

N∑

r=1

kcat
kr Mr(t). (13)

Now applying Ito’s lemma [16] to Yk(t)Yl(t), for k 6= l, using (8) and (11), we
find that

d (Yk(t)Yl(t)) = {Yl(t)bk (Y(t)) + Yk(t)bl (Y(t)) + 1

2
(alk (Y(t)) + akl (Y(t)))} dt + mart.,

=
{

Yl(t)

(
ks

k − kd
kYk(t) +

N∑

r=1

kcon
kr Yr(t)− Yk(t)

N∑

r=1

kcon
rk +

N∑

r=1

kcat
kr Yr(t)

)

+ Yk(t)

(
ks

l − kd
l Yl(t) +

N∑

r=1

kcon
lr Yr(t)− Yl(t)

N∑

r=1

kcon
rl +

N∑

r=1

kcat
lr Yr(t)

)

+ 1

2
(−kcon

lk Yk(t)− kcon
kl Yl(t)− kcon

kl Yl(t)− kcon
lk Yk(t))

}
dt + mart.,
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where “mart.” denotes a martingale, whose precise form is not relevant to this
analysis. Taking expected values, we conclude that

dE [Yk(t)Yl(t)]

dt
= ks

kE [Yl(t)]− kd
kE [Yl(t)Yk(t)] +

N∑

r=1

kcon
kr E [Yl(t)Yr(t)]

− E [Yl(t)Yk(t)]

N∑

r=1

kcon
rk − kcon

kl Yl(t) +

N∑

r=1

kcat
kr E [Yl(t)Yr(t)]

+ ks
lE [Yk(t)]− kd

l E [Yk(t)Yl(t)] +

N∑

r=1

kcon
lr E [Yk(t)Yr(t)]

− E [Yk(t)Yl(t)]
N∑

r=1

kcon
rl − kcon

lk Yk(t) +
N∑

r=1

kcat
lr E [Yk(t)Yr(t)] , for k 6= l.

(14)

Similarly, applying Ito’s lemma to Y 2
k (t), using (8) and (10), we find that

d
(
Y 2

k (t)
)

= {2Yk(t)bk (Y(t)) + akk (Y(t))} dt + mart.,

=
{

2ks
kYk(t)− 2kd

kYk(t)
2 + 2

N∑

r=1

kcon
kr Yk(t)Yr(t)− 2Y 2

k (t)
N∑

r=1

kcon
rk

+ 2

N∑

r=1

kcat
kr Yk(t)Yr(t) + ks

k + kd
kYk(t)

+
N∑

r=1

(kcon
kr Yr(t) + kcon

rk Yk(t)) +
N∑

r=1

kcat
kr Yr(t)

}
dt + mart.

Hence,

dE [Y 2
k (t)]

dt
= 2ks

kE [Yk(t)]− 2kd
kE
[
Y 2

k (t)
]
+ 2

N∑

r=1

kcon
kr E [Yk(t)Yr(t)]− 2E

[
Y 2

k (t)
] N∑

r=1

kcon
rk

+ 2

N∑

r=1

kcat
kr E [Yk(t)Yr(t)] + ks

k + kd
kE [Yk(t)]

+
N∑

r=1

kcon
kr E [Yr(t)] + E [Yk(t)]

N∑

r=1

kcon
rk +

N∑

r=1

kcat
kr E [Yr(t)] . (15)

Comparing (14) and (15) with (12) and (13), we see that the second moments
and correlations for the CME and CLE statisfy the same closed system of ODEs,
which proves the result.
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5 Multi-Scale Gene Transcription Model

Raser and O’Shea [10] were able to explain noise in eukaryotic gene expression
with a CME model where DNA exists in two distinct states; active and inactive. If
we assume that m gene copies are present, each of which can switch independently
between the two states, then the model may expressed as

Di
ka→ D⋆

i

Di
kd← D⋆

i

D⋆
i

kr→ D⋆
i + M





1 ≤ i ≤ m. (16)

and

M
kp→ M + P (17)

M
γr→ ∅ (18)

P
γp→ ∅. (19)

Here Di and D⋆
i represent the ith gene copy in its inactive and active states,

respectively. The first two reactions in (16) are therefore of conversion type.
The third reaction in (16) models the active ith gene producing mRNA and has
the form of catalytic production from a source. The reaction (17) also involves
catalytic production from a source; in this case mRNA causes protein to be
produced. Reactions (18) and (19) model the degradation of mRNA and protein,
respectively. A simpler version of this model, where there is no inactive state, was
proposed in [11], and that reference gives an interesting biologically-motivated
discussion of the merits and limitations of the use of first-order CME kinetics for
transcription/translation processes. ODEs for means and variances in the full
CME model are derived in [9, Supplementary Information] (these could also be
found from the general derivation of [7]) along with an expression for the full
steady-state distribution of mRNA.

CME and CLE formulations of the system (16)–(19) were analyzed in [13], where
it was shown that first and second moments of the CLE match those for the
CME. That result was the motivation for the general theory of section 4.

Paszek [8] looked at the case of a single gene, m = 1, in (16)–(19) and considered

(a) treating gene switching with the CME, and mRNA and protein produc-
tion/decay with the RRE, or, alternatively,

(b) treating gene switching and mRNA production/decay with the CME, and
protein production/decay with the RRE.
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The motivation is that the mRNA and protein (case (a)) or protein (case (b))
may be much more abundant than the other quantities, so the continuous-valued
ODE framework may be appropriate for that part of the system. This, of course,
allows for a cheaper simulation than the full CME. Paszek looked at the steady-
state means and variances and showed that moving partially to the RRE in this
way introduces an error in the variance that can be quantified in terms of the
reaction rate parameters. Our aim in this section is to consider partially using
the CLE instead of the RRE—this also gives a much cheaper model to simulate
but, using our insights from section 4, should give a more accurate variance. In
fact, we will see that this version reproduces the exact CME variance for all time
and for any value of m.

We also emphasize that “noise strength” in stochastic regulatory network models
is typically measured as the ratio of mean to variance (often at steady state)
[8, 9, 10, 11], so our focus on first and second moments is highly relevant.

We begin by stating the ODEs arising for the first and second moments and
correlations in the CME version of (16)–(19). With a slight abuse of notation,
we will let Di(t), D⋆

i (t), M(t) and P (t) denote the random variables describing
the state of the corresponding species at time t in the CME, and for convenience
we will not explicitly display the time dependence. Using (3) and (4) (with some
extra details given in the appendix) we then obtain

dE[M ]

dt
=

m∑

s=1

krE[D⋆
s ]− γrE[M ] (20)

dE[P ]

dt
= kpE[M ] − γpE[P ] (21)

and

dE[M2]

dt
= 2kr

m∑

s=1

E[MD⋆
s ]− 2γrE[M2] + γrE[M ] + kr

m∑

s=1

E[D⋆
s ] (22)

dE[P 2]

dt
= 2kpE[MP ]− 2γpE[P 2] + γpE[P ] + kpE[M ] (23)

and, after summing the ODEs for E[D⋆
sM ] and those for E[D⋆

sP ],

d
∑m

s=1 E[D⋆
sM ]

dt
= −(γr + kd)

m∑

s=1

E[D⋆
sM ] + ka

m∑

s=1

E[DsM ] + kr

m∑

k=1

m∑

s=1

E[D⋆
kD

⋆
s ]

(24)

d
∑m

s=1 E[D⋆
sP ]

dt
= −(kd + γp)

m∑

s=1

E[D⋆
sP ] + kp

m∑

s=1

E[D⋆
sM ] + ka

m∑

s=1

E[DsP ]

(25)
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and finally

dE[MP ]

dt
= −(γr + γp)E[MP ] + kpE[M2] + kr

m∑

s=1

E[D⋆
sP ]. (26)

Now we consider the case where the reversible reactions in (16) governing the state
of the genes are modeled with the CME, but the transcription/translation/degradation

reactions involving M and P are modeled with the CLE. We will use M̂ and P̂ to
denote the time-dependent random variables that describe the amount of mRNA
and protein from this hybrid model, respectively.

We will also let r = r(t) :=
∑m

i=1 D⋆
i record the number of active genes at time t.

Note that r takes values in {0, 1, 2, 3, . . . , m}, driven by a continuous time Markov
chain. Using the CLE for mRNA and protein then produces a pair of SDEs driven
by an independent Markovian switch. This type of stochastic evolution equation
has been used as a model in several application areas, including mathematical
finance, where, for example the market may switch from ‘confident’ to ‘nervous’
causing a change in the volatility of an asset. The recent monograph [17] dis-
cusses analytical and computational issues surrounding SDEs with switches. Of
particular relevance to our work is the fact that there is a generalized version of
Ito’s lemma that is valid even for functions depending on r(t); [17, Theorem 1.45
and Lemma 1.9].

The Markovian switching SDE for M̂ and P̂ describing the CLE takes the form

d

[
M̂

P̂

]
=

[
krr − γrM̂

kpM̂ − γpP̂

]
dt+




√

krr −
√

γrM̂ 0 0

0 0

√
kpM̂ −

√
γpP̂








dW1

dW2

dW3

dW4


 .

(27)

In order to analyse this system, we first compute the transition rates between
states of the Markovian switch. We define γij to be the transition rate from state
i to state j so that, for j 6= i,

P (r(t + δ) = j, given r(t) = i) = γijδ + o(δ).

Then γii := −∑j 6=i γij is such that

P (r(t + δ) = i, given r(t) = i) = 1 + γiiδ + o(δ).

For convenience, we also define γ0,−1 = 0 = γm,m+1.

The matrix of transition rates is clearly tridiagonal. For a general state i we
have three non-zero transition rates. If there are currently i active genes, the

13



probability of moving to state i−1 is proportional to i and the deactivation rate,
giving

γi,i−1 = ikd. (28)

Alternatively, the probability of moving to state i + 1 is proportional to the
number of inactive genes, m− i, and the activation rate, ka, giving

γi,i+1 = (m− i)ka. (29)

Since all other off-diagonal entries on the ith row are zero, we have

γi,i = −ikd − (m− i)ka. (30)

In applying the generalized Ito’s lemma we also need to know that

m∑

j=1

jγr(t),j = (r(t)− 1) γr(t),r(t)−1 + r(t)γr(t),r(t) + (r(t) + 1) γr(t),r(t)+1

= −kdr(t)− kar(t) + kam. (31)

For the first moments, we simply take expectation in (27) to obtain

dE[M̂ ]

dt
= krE[r]− γrE[M̂ ]

and
dE[P̂ ]

dt
= kpE[M̂ ]− γpE[P̂ ],

agreeing with (20) and (21).

Applying the generalized Ito lemma to M̂r, we find that

d
(
M̂r
)

=

(
r
(
krr − γrM̂

)
+

m∑

j=1

jM̂γr(t),j

)
dt + mart.

Using (31) and taking expectations,

dE[M̂r]

dt
= krE[r2]− γrE[rM̂ ]− kdE[rM̂ ]− kaE[rM̂ ] + kam E[M̂ ],

which agrees with (24), when we note that Ds + D⋆
s = 1.

Similarly apply generalized Ito to P̂ r,

d
(
P̂ r
)

=

(
r
(
kpM̂ − γpP̂

)
+

m∑

j=1

jP̂ γr(t),j

)
dt + mart.,
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and using (31) and taking expectations,

dE[P̂ r]

dt
= kpE[rM̂ ]− γpE[rP̂ ]− kdE[rP̂ ]− kaE[rP̂ ] + kam E[P̂ ],

which agrees with (25).

Ito on M̂2 gives

d
(
M̂2
)

=

(
2M̂

(
krr − γrM̂

)
+

1

2
× 2

(
k2r + γrM̂

))
dt + mart.,

and hence

dE[M̂2]

dt
= 2krE[rM̂ ]− 2γrE[M̂2] + krE[r] + γrE[M̂ ],

agreeing with (22).

Also, Ito on M̂P̂ gives

d
(
M̂P̂

)
=
(
P̂
(
krr − γrM̂

)
+ M̂

(
kpM̂ − γpP̂

))
dt + mart.,

and hence

dE[M̂P̂ ]

dt
= krE[rP̂ ]− γrE[M̂P̂ ] + kpE[M̂2]− γpE[M̂P̂ ],

agreeing with (26).

Finally, Ito on P 2 gives

d
(
P̂ 2
)

=
(
2P̂
(
kpM̂ − γpP̂

)
+ 1

2
× 2

(
kpM̂ + γpP̂

))
dt + mart.,

and hence

dE[P̂ 2]

dt
= 2kpE[M̂P̂ ]− 2γpE[P̂ 2] + kpE[M̂ ] + γpE[P̂ ],

agreeing with (23)

Overall, we have shown that using the CME model for the genes and the CLE
model for the mRNA and protein gives the same means, variances and correla-
tions, for all time, as for the full CME model. This provides further support for
the use of the CLE in regimes where a fully discrete simulation is not computa-
tionally feasible.
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6 Dimerization Model

We saw in section 5 that the Raser and O’Shea gene transcription model (16)–(19)
is a first-order reaction network in the sense of [7]. This first-order character is
lost when we need to model the case where proteins combine to form complexes.
Typically, these complexes degrade less rapidly than the underlying proteins,
producing so-called “cooperative stability”[18]. This effect can widen the acces-
sible range of protein levels and hence enhance biological function. Cooperative
stability through nonlinear degradation was examined in [18] in a simple genetic
circuit with feedback, although stochastic effects were not considered. An SSA
study of the role of dimerization in noise reduction of a simple genetic circuit with
negative feedback was conducted in [19], under the assumption that the dimers
do not degrade but dissociate back to monomers.

The CME and CLE formulations of a simple dimerization model were compared
in [13]. Here, we consider a more realistic case, which is therefore more com-
putationally demanding. We take the gene transcription model (16)–(19) in the
case of a single gene copy, m = 1, adding a dimerization pathway (the protein
monomers P forming dimers P2), with the dimers degrading less rapidly than the
monomers (γp2

< γp):

P + P
k1→ P2 (32)

P2
k
−1→ P + P (33)

P2

γp2→ ∅ (34)

Here, reaction (32) represents the dimerization process—two proteins combine to
form a new species. In reaction (33) a dimer molecule dissociates back into two
protein moelcules. Reaction (34) represents decay of a dimer molecule. Theo-
rem 4.1 and the results in [7] do not apply, because P +P → P2 is not first-order,
so our aim is to test via numerical simulation how closely the first and second
moments for the CME match those for the CLE.

Writing the state vector as




X1(t)
X2(t)
X3(t)
X4(t)
X5(t)




=:




D
D∗

M
P
P2




,
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an appropriate stoichiometric matrix takes the form

[
ν1 ν2 . . . ν9

]
=




−1 1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 −2 2 0
0 0 0 0 0 0 1 −1 −1




and the propensity functions are a1 = kaD, a2 = kdD
∗, a3 = krD

∗, a4 = γrM ,
a5 = kpM , a6 = γpP , a7 = k1P (P − 1)/2, a8 = k−1P2, a9 = γP2

P2.

Our main source for rate constants is [19], where the authors used a specific
implementation of the genetic circuit in E.coli to choose biologically reasonable
values. The rate constant of transcription kr = 0.0078s−1 is similar to the one
used in [11]. The typical mRNA half-life is 3min (γr = 0.0039s−1). The average
number of proteins per mRNA is fixed at b = 11 (kp = bγr). The protein monomer
decay rate is γp = 0.0007s−1, which is chosen to match the degradation rate due
to cell-growth induced dilution [19]. According to [18], many dimers are diluted
by cell division in the rapid exponential growth phase (≈ 50 min half-life). For
the dimerization reaction, [19] made a reasonable choice k1 = 0.025s−1(nM)−1

and k−1 = 0.5s−1, noticing that the actual values of these rate constants do
not matter as long as they are larger than those for the other reactions in the
system, with the ratio between k1 and k−1 playing a key role. For prokaryotes,
the processes of DNA activation and de-activation are much slower than the
transcription (ka ≪ kr and kd ≪ kr): we chose the values ka = kd = 0.001 [10].
Our conclusions remain the same for the case wherein ka ≫ kr, kd ≫ kr (not
shown).

Using Monte Carlo simulation over K = 105 paths we computed sample mean
approximations to E[P ], E[P 2], E[P2] and E[P 2

2 ]. Initial conditions were deter-
mined from the steady-state of the ODE-based model: D(0) = kdDT /(ka + kd),
D∗(0) = kdDT /(ka + kd), M(0) = krD

∗/γr, P (0) = (−b +
√

d)/(2a), and P2(0) =
k1P (0)2/(k−1 + γp2

). Here, d = γ2
p + 4akpM(0) and a = 2k1(1− k−1/(k−1 + γp2

)),
and we consider the time interval 0 ≤ t ≤ 20. In Table 1 we give approximate
95% confidence intervals for each sample mean, found by adding and subtract-
ing ±1.96 std/

√
K, where std denotes the standard deviation. CLEa and CLEb

denote the results for Euler–Maruyama [16] using a fixed stepsize of 0.04 and
0.004, respectively, in order to confirm that numerical discretization errors are
not significant.

Table 1 shows that to typical Monte Carlo accuracy, the CLE does a good job
of reproducing the means and variances of the CME. Along with the theoretical
results in sections 4 and 6, this adds further support for the use of a stochastic
differential equation model as a comprise between the extremes of the expensive
discrete/stochastic CME and the crude continuous/deterministic RRE.
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E[P ] E[P 2] E[P2] E[P 2
2 ]

CME [64.96, 65.06] [4276.9, 4289.1] [105.06, 105.11] [11054, 11064]
CLEa [64.99, 65.08] [4280.2, 4292.5] [105.05, 105.10] [11051, 11061]
CLEb [64.98, 65.07] [4279.4, 4291.7] [105.06, 105.11] [11053, 11063]

Table 1: 95% confidence intervals for Monte Carlo sample mean approximations
to E[P ], E[P 2], E[P2] and E[P 2

2 ] at time t = 20 in the CME and CLE formulations
of the model (16)–(19), with m = 1, and (32)–(34). CLEa uses Euler–Maruyama
with stepsize 0.04 and CLEb uses Euler–Maruyama with stepsize 0.004.

7 Summary and Conclusions

Means, variances and correlations are the standard measures that biologists use
to summarize the intrinsic noise in regulatory networks. In the commonly arising
case where reactions are first-order, we have shown that a stochastic differen-
tial equation model known as the Chemical Langevin Equation gives exactly the
same results, for all time, as the more fundamental Chemical Master Equation.
We also showed that a particular multi-scale model that combines elements of
the Langevin and Master equations has the same property. From the viewpoint
of computational biology, this result supports the use of the numerically dis-
cretized Chemical Langevin Equation as the basis of a simulation tool that is
typically orders of magnitude more efficient than the Stochastic Simulation Al-
gorithm approach, which uses the Chemical Master Equation. Further, just as
deterministic ordinary differential equations are generally more amenable to the-
oretical analysis than discrete maps, the Langevin regime, which can be analyzed
conveniently with the tools of stochastic calculus, will typically succumb more
readily to analysis than the discrete-valued master equation. There are, of course,
many interesting open questions regarding the extent to which the Langevin and
Master Equation approaches match for higher order networks.
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A Appendix: CME Moments for Gene Tran-

scription System

For the system described by (16)–(19), we may write the state vector for the
CME in the form 



D1

D⋆
1

D2

D⋆
2

...

...
Dm

D⋆
m

M
P




∈ R
2m+2.

It then follows that

K =




−ka kd

ka −kd

−ka kd

ka −kd

. . .
. . .

−ka kd

ka −kd

0 kr 0 kr . . . 0 kr −γr 0
kp −γp




∈ R
(2m+2)×(2m+2),

Ks = 0 ∈ R
(2m+2)×(2m+2), and Γ ∈ R

(2m+2)×(2m+2) is such that

Γ+ΓT =




0 0 . . . . . . 0 0 0

0
. . .

... krE[D⋆
1]

...
... 0

...
krE[D⋆

2]
...
...

...
. . .

... 0
...

0
. . . 0 krE[D⋆

m] 0
0 krE[D⋆

1] 0 krE[D⋆
2] . . . . . . 0 krE[D⋆

m] 0 kpE[M ]
0 0 . . . . . . 0 kpE[M ] 0




.
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Using these expressions in (3) and (4) we obtain the ODEs (21), (22) and (23).
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